
Poland: non-nuclear country?

Anna

Poland: nuclear since 57 years

Ewa 1958 2 MW Anna 1963 10 kW Maryla 1963 100 kW Agata 1973 10 kW Wanda 1985 100 kW Maria 1974 30 MW

Maryla

Polish Nuclear Power Programme

- The first attempt ~1970: VVR400 in Żarnowiec
- Abandoned after constructing 44% of the plant

Polish Nuclear Power Programme

Decision taken 13.01.2009:

- PGE indicated as the first investor
 - largest Polish energy company
- 2 plants, 3000 MW each, by 2030
 - the first unit by 2020, now delayed to 2024

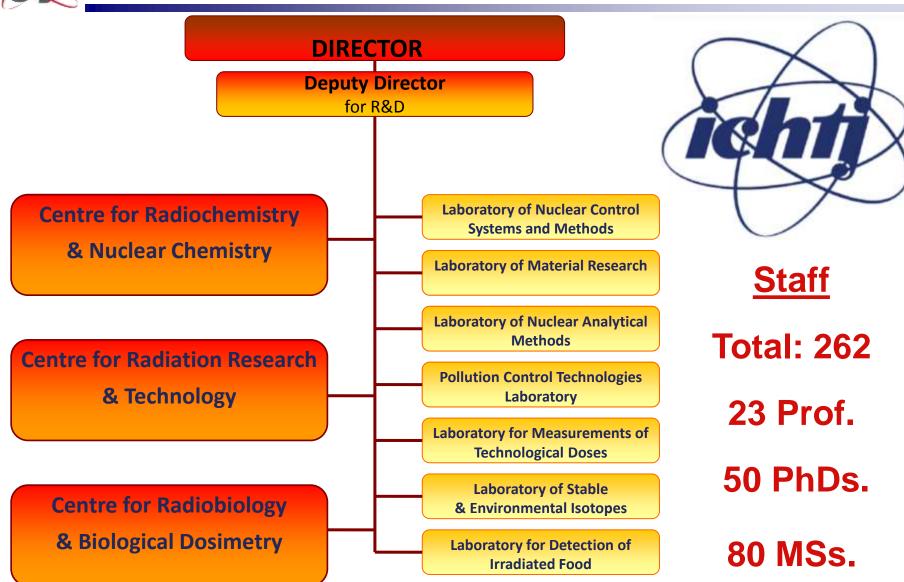
Program approved 28.01.2014:

Plan for the first unit:

- 2015 technology choice
- 2016 request for permit
- 2018 licence issued
- 2024 in operation

Some delay is expected

Polish nuclear institutes


Institute	site	staff	supervised	funded
National Centre for Nuclear Research (NCBJ)	Świerk, Warsaw	1073	Ministry of Economy	Ministry of Science & Higher Education
Inst. of Nuclear Chemistry & Technology (IChTJ)	Warsaw	262		
Central Lab. for Radiological Protection (CLOR)	Warsaw	53		
Institute for Plasma Physics & Laser Microfusion (IFPiLM)	Warsaw	81		
Institute of Nuclear Physics (IFJ) Polish Academy of Sciences	Cracow	486	Ministry of Science & Higher Education	

Universities with some nuclear research and education:

- AGH Technical University in Cracow,
- Warsaw University of Technology, University of Warsaw,
- Technical University in Gdańsk, Silesian University of Technology,
- Wrocław Technical University, + ...

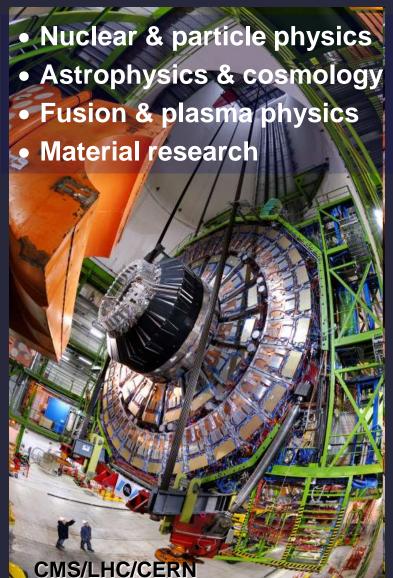
Institute of Nuclear Chemistry & Technology

Institute of Nuclear Chemistry & Technology

Radiochemistry laboratories

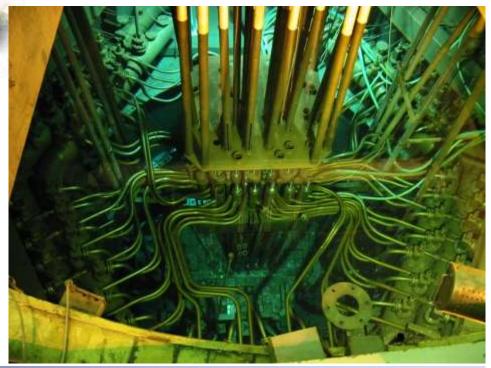
Accelerators

National Centre for Nuclear Research


Nuclear Centre at Swierk 30 km from Warsaw


- The largest research institute in Poland
 - 1073 employees, inc. 56 prof. & 117 PhD
- Scientific achievements:
 - ~600 reviewed papers, 8200 quotations each year
 - Hirsh index = 115, \Rightarrow 4th position in Poland
 - SCImago "Normalized Impact": 1st in Poland, 8th in region, 158th in the world
- Incomes:
 - statutory fund ~16%, grants/projects ~21%
 - commercial activities ~63%

research ⇒ apparatus ⇒ products



Research reactor MARIA at Świerk

- built 1974, upgraded 1992
- pool type
- H₂O, Be moderated
- 30 MW thermal power
- neutron flux:
 - thermal 4·10¹⁴ n/cm²s
 - o fast 2·10¹⁴ n/cm²s

- neutron beam research, material irradiation, radioisotope production
- ⁹⁹Mo for medical use 20 weeks in 2013
- 1 week of Maria irradiation = 100 000 medical procedures

Maria research reactor

Each channel is individually connected to the primary cooling circuit

Irradiation channels: ø=79mm in fuel channels, 1000 Ci, 2.0x1.8x1.3m 38mm in graphite, 23mm in beryllium, 1m long SPENT FUELS IN **TECHNOLOGY CONTROL RODS CHANNELS DRIVE MECHANISM FLOWGATE TECHNOLOGY POOL SPENT FUEL** REACTOR HORIZONTAL **CHANNEL**

Material Testing Laboratory

Hot cells, mechanical tests, structural analysis

Project NLEJ (100 mIn €)

- MARIA reactor can work for many years
 - o modular construction, modernised year by year
- Auxiliary equipment needs serious upgrade
 - neutron beams (spectrometers etc)
 - material analysis (tandem etc.)

0 ...

The project is called "NLEJ": National Laboratory for Nuclear Research

- Status:
 - @ Polish Roadmap of Research Infrastructures

POLATOM radioisotope centre

- Research on production methods and medical applications
- Production: ~80 products to 78 countries

Lab for preclinicatests with animal

Radioisotope products of NCBJ

PRODUCTS FOR NUCLEAR MEDICINE

Radiopharmaceuticals for diagnostic and therapy

- MIBG ¹³¹I for diagnostic use
- MIBG ¹³¹I for therapeutic use
- MIBG ¹²³I for injection
- Sodium iodide, Na 131 I for injection
- Sodium iodide, Na 131 capsules for diagnostics
- Sodium iodide, Na 131 capsules for therapy
- Sodium orthophosphate, Na₂H³²PO₄ for injection
- Hipuran ¹³¹I for injection
- Strontium chloride, 89SrCl₂

Kits for labelling with 99mTc

- PoltechColloid, 0,17 mg
- PoltechDMSA, 1 mg
- PoltechDTPA, 13,25 mg
- PoltechMBrIDA, 20 mg
- PoltechMDP, 5 mg
- PoltechMIBI, 1 mg
- PoltechRBC, 14,40 mg
- ^{99m}Tc-Tektrotvd

Radiochemicals (pharmaceutical grade)

- Sodium chromate, Na₂⁵¹CrO₄ for injection
- ⁶⁴CuCl₂ as cupric (II) chloride
- ⁵⁹Fe as Iron (III) citrate, FeC₆H₅O₇
- ⁵¹Cr as ⁵¹Cr-EDTA for injection

Precursors for labelling

- LutaPol
- ItraPol

Radionuclide generators

- ⁹⁹Mo/^{99m}Tc generator
- ¹⁸⁸W/¹⁸⁸Re generator

Accessories for Nuclear Medicine Department

PRODUCTS FOR RESEARCH AND DEVELOPMENT

Radiochemicals reagents

Iron ⁵⁵Fe

Antimony ¹²⁴Sb Arsenic ⁷⁶As Barium ¹³¹Ba

Barium ¹³³Ba

Bromine 82Br Cadium 109Cd

Cadium 115mCD Caesium ¹³¹Cs

Caesium ¹³⁴Cs Caesium ¹³⁷Cs

Calcium ⁴⁵Ca Chromium ⁵¹Cr

Cobalt ⁵⁸Co

Cobalt ⁶⁰Co

Copper ⁶⁴Cu Europium ¹⁵²Eu

Europium ¹⁵²⁺¹⁵⁴Eu

Gold ¹⁹⁸Au Holmium ¹⁶⁶Ho

lodine 131

Indium ^{114m}In Iridium 192 Ir

Iron ⁵⁹Fe Lanthanum 140La

Lutetium ¹⁷⁷Lu

Neodymium 147Nd Phosphorus ³²P

Rhenium ¹⁸⁶Re

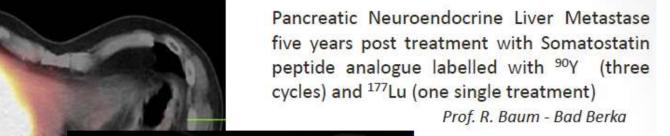
Rubidium 86RB Samarium 153Sm

Scandium ⁴⁶Sc Selenium ⁷⁵Se

Silver 110mAq Sodium ²⁴Na

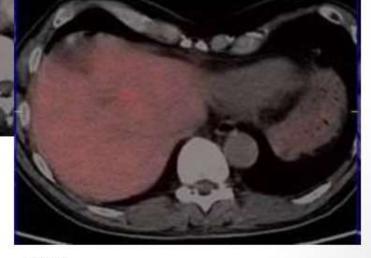
Strontium 85Sr

Strontium 89Sr Strontium 90Sr Sulphur 35S


Terbium ¹⁶⁰Tb

Thallium ²⁰⁴TI Thulium ¹⁷⁰Tm

Tin ¹¹³Sn


Itrapol (90Y) & Lutapol (177Lu)

2006

2007

2010

- first ever registration of ¹⁷⁷Lu medical product

Project CERAD (40 mln €)

Center of Design & Synthesis of Radiopharmaceuticals for Molecular Targeting

@ Polish RI Roadmap

Widdening the range of radionuclides:

¹¹C, ¹³N, ¹⁵O, ¹⁸F, ²²Na, ⁴⁴Sc, ⁴⁷Sc, ⁷⁴As, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ge, ⁸¹Rb, ⁸²Sr, ⁸⁶Y, ⁸⁹Zr, ^{94m}Tc, ^{99m}Tc, ¹⁰⁹Cd, ¹¹¹In, ¹²³I, ¹²⁴I, ²⁰¹TI, ²¹¹At, ²²⁵Ac

Novel imaging techniques:

Multimodality scanners, chemical synthesis and biochemical laboratories

Access to research infrastructures

Bilateral agreements

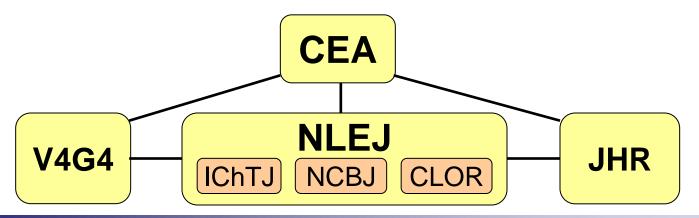
- Cooperation with CEA:
 - eg. gamma-heating experiment in MARIA for JHR
 - H2020: **POLARIC** proposal

Regional aliances

- Visegrad-group (CZ, HU, SK, PL)
 - Euratom: VINCO proposal
- Baltic countries (LT, LV, ET, PL, ...)
 - Euratom: BRILLIANT proposal

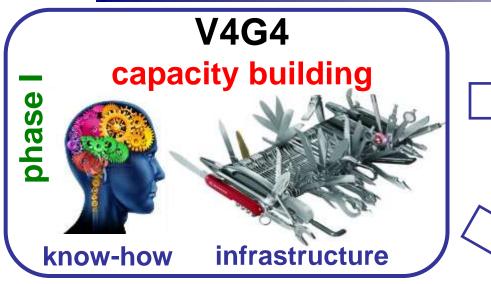
SNETP activities

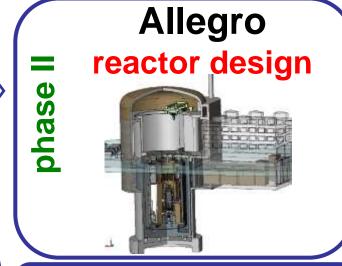
- Nuclear Cogeneration Industrial Initiative
 - FP7: NC2I-R project coordinated by NCBJ


H2020 Teaming: POLARIC ⇒ NLEJ

"Teaming" is an excellent tool Polish nuclear institutes

- to implement NLEJ
- to coordinate CLOR, IChTJ & NCBJ activities
- to facilitate cooperation with JHR & V4G4
- to strengthen collaboration with CEA


POLish Atomic Research & Innovation Centre (POLARIC)


- Deditated CEA-NCBJ MoU signed
- Dedicated CLOR-IChTJ-NCBJ MoU signed
- Proposal submitted to the "Teaming" call

Visegrad-4 for Generation-4 reactors

other projects

France: **Technology input**

Slovakia: Reactor design & safety

- safety concept, design basis, simulation and numerical analysis

Chech R: Research laboratory on technology related experiments

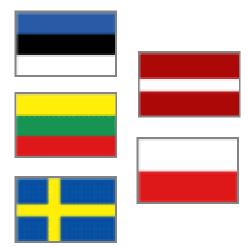
- thermophysics, aerodynamics, helium technology, reactor physics, etc.

Hungary: Laboratory on the closed fuel cycle and fuel issues

- PIE of ceramic fuels, separation of minor actinides, fuel fabrication, etc.

Poland: Material research laboratory

- irradiation by reactor & accelerators, structural & functional material analysis



BRILLIWNT

Baltic Region Initiative for Long Lasting InnovAtive Nuclear Technologies

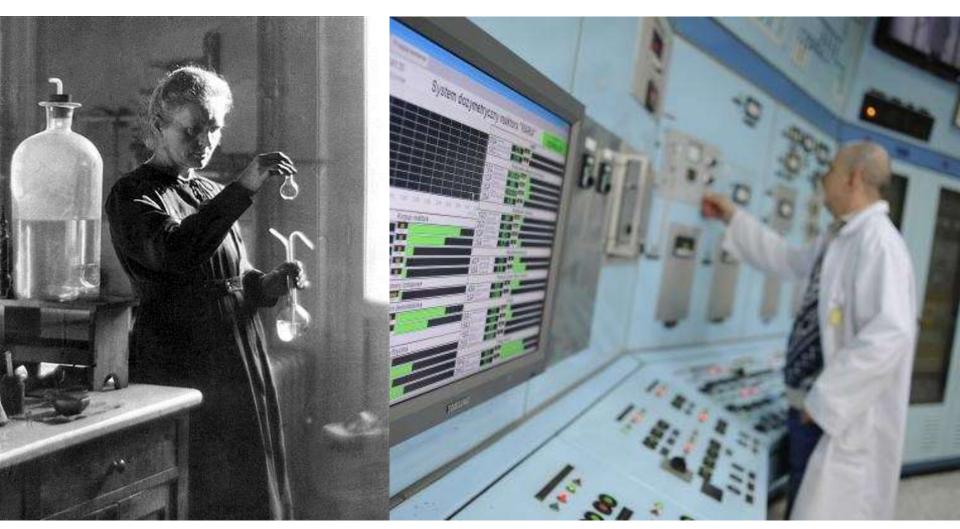
Estonia Latvia Lithuania Poland Sweden

Local problems:

- Relatively small power systems
 ano justification for autonomous
 handling of nuclear wastes
- Basic technical level of heavy industry & diminishing number of qualified workers
- Poor nuclear research infrastructure & competence gap between old and new nuclear programs

Towards regional solutions:

- Analysis of electric power systems
- Regional cooperation on nuclear waste and fuel cycle
- Macroeconomic impact of nuclear programs
- Nuclear R&D capacity building


EU and regional research infrastructures

- System with large R.I. in only a few countries is not sustainable
- Researchers from other countries must have possibility to make careers & educate new generations at home
- Otherwise, it is just brain-drain
- We have to reverse this trend

The dream of Maria Skłodowska-Curie

is being realised by the MARIA reactor. Let's continue!

The nightmare of Maria Skłodowska-Curie

How to get funds for research on radiation & its applications

We need more Marias!

