Czy zobaczymy Nową Fizykę w LHC? Selekcja przypadków w eksperymencie CMS

G. Wrochna

- Gdzie szukać Nowej Fizyki?
 femtobarny i teraelektronowolty
- Wymagane cechy akceleratora i detektorów
 nanosekundy i mikrony
- System zbierania danych i tryger CMS
 – GIPSy, TIPSy i petabajty
- Problemy projektowania i planowania

 długie lata ...

Unifikacja oddziaływań

- QED elektrodynamika kwantowa
- QCD chromodynamika kwantowa

Krótka historia fizyki

γ e⁺ γ γ e⁺ γ	10 ⁻¹⁰ m	<10eV	3 [.] 10 ⁷ lat	1900 mechanika kwantowa, fizyka atomowa 1940-50 elektrodynamika kwantowa
	10 ⁻¹⁵ m	MeV-GeV	3 min.	<mark>1950-65</mark> jądra, hadrony, teorie pola
••• @	10 ⁻¹⁶ m	>>GeV	10 ⁻⁶ s	<mark>1965-75</mark> kwarki, teorie pola z cechowaniem
	10 ⁻¹⁸ m	100 GeV	10 ⁻¹⁰ s	1970-83 SPS QCD, unifikacja elektrosłaba
3 leptony $\begin{bmatrix} v_e \\ e \end{bmatrix} \begin{bmatrix} v_\mu \\ \mu \end{bmatrix}$	ν _τ			1990 LEP 3 rodziny fermionów
3 kwarki d s x3 kolory R	t b C B			1995 Tevatron kwark top
pochodzenie mas	10 ⁻¹⁹ m	10 ³ GeV	10 ⁻¹² s	2005 LHC higgs? SUSY?
rozpad protonu?	10 ⁻³² m	10 ¹⁶ GeV	10 ⁻³² s	?? eksp. podziemne?Wielka Unifikacja?
początek Wszechświata	10 ⁻³⁵ m	10 ¹⁹ GeV	10 ⁻⁴³ s	?? ?? grawitacja kwantowa? superstruny?

Sytuacja obecna

Model Standardowy (SM) dobrze opisuje oddziaływania elektrosłabe i silne. Dotychczas nie zaobserwowano żadnych znaczących odchyleń od jego przewidywań (prócz zagadki neutrin).

Ma jednak wady:

- ~20 wolnych parametrów
- masy cząstek generowane są przez mechanizm Higgsa nie wyjaœniony wewnątrz SM
- cząstka Higgsa nie została (jeszcze?) odkryta
- SM nie wyjaśnia też
 - istnienia trzech pokoleń fermionów
 - mieszania pomiędzy pokoleniami

Strategia na najbliższą przyszłość:

- znaleźć cząstke Higgsa lub wykluczyć jej istnienie w obszarze dopuszczalnym przez teorię (~1 TeV)
- poszukiwać odchyleń od Modelu Standardowego
- poszukiwać nowych cząstek (~50 GeV ~5 TeV)

Potrzebne narzędzia

- akcelerator
 - duża energia
 - szeroki zakres energii
 - duża świetlność
- detektory
 - uniwersalność (e, γ , μ , dżety, brakująca energia)
 - granularność (duża liczba cząstek)
 - szybkość (duża świetlność)

Akcelerator LHC

Wykres Livingstona 10¹⁸ $(SSC) \times$ 🔊 LHC Akceleratory hadronowe równoważna energia wiązki [eV] (**Colliders**) 10^{15} **TeVATRON** SPPS 1012 SR (□Strong Focus Synchrotrons) ak Focus Synchrotrons) 10⁹ Synchro-cyclotrons) (#Linacs) %Electrostatic Generators) Cyclotrons (ORectifier Generators) 10^{6} 1920 1940 1960 1980 2000 2020 rok

Użycie coraz to nowych technologii umożliwia szybki wzrost możliwosci akceleratorów.

Zastosowanie magnesów nadprzewodzących w istniejącym tunelu LEP (CERN, Genewa) pozwoli zderzać protony z \sqrt{s} =14 TeV.

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Eksperyment CMS

Compact Muon Solenoid - to detektor przeznaczony do badania zderzeń proton-proton w akceleratorze LHC.

Podstawowe założenia projektowe:

- 1. Bardzo dobry <u>system mionowy</u> – precyzja pomiaru, hermetyczność, redundancja
- 2. Najlepszy możliwy kalorymetr elektromagnetyczny – zdolność rozdzielcza, jednorodność, granularność
- 3. Wysokiej jakości <u>detektor centralny</u> – gęstość próbkowania, precyzja pomiaru
- 4. Hermetyczny kalorymetr hadronowy

Budowa detektora CMS

Poszukiwanie higgsa

Model Standardowy opiera się na założeniu, że istnieje cząstka Higgsa, lżejsza niż ~1 TeV.

Eksperymentalnie wykluczono już M_H<92 GeV.

Jeżeli higgs nie zostanie odkryty przy największej energii LEP (200 GeV), to do przeszukania pozostanie obszar $98 < M_H < 1000$ GeV.

Optymalna strategia poszukiwania higgsa w LHC zależy od jego masy:

 $\begin{array}{ll} 80 < M_{H} < \ 140 \ \text{GeV} & H \rightarrow \gamma\gamma \\ 130 < M_{H} < \ 700 \ \text{GeV} & H \rightarrow ZZ^{(\star)} \rightarrow 4 \ \text{leptony} \\ 500 < M_{H} < 1000 \ \text{GeV} & H \rightarrow ZZ^{(\star)} \rightarrow 2 \ \text{leptony} + 2 \ \text{dzety} \end{array}$

$H \rightarrow \gamma \gamma$ (80 < M_H <140 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptony (130<M_H<500 GeV)

Przypadku z czterema wysokoenergetycznymi leptonami ($e \$ lub μ) nie da się nie zauważyć.

Zwłaszcza pewna identyfikacja mionów ("złoty kanał") pozwala niemal całkowicie wyeliminować tło. *Precyzja:*

σ (M_H~170 GeV) = 1 GeV.

 $H \rightarrow ZZ^{(*)} \rightarrow leptony+dżety$ (130<M_H<500 GeV)

W reakcjach:

 $H \to Z Z^{(\star)} \to \ell^+ \ell^- \ j \ j$

$$H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \nu \nu$$

$$H \to W^+ W^- \to \ell^\pm \nu \ j j$$

kalorymetr hadronowy mierzy energię dżetów (j) i brakującą energię poprzeczną E_t^{miss} , charakterystyczną dla neutrin (v).

 $M_{Higgs} = 800 \text{ GeV}$

Łamanie CP

Łamanie CP najsilniej powinno przejawić się w różnicy częstości rozpadów

$$B^0 \to J/\psi \ K^0_S \quad i \quad \overline{B^0} \to J/\psi \ K^0_S$$

gdzie

$$J/\psi \rightarrow \mu^+\mu^-$$
, $K_S^0 \rightarrow \pi^+\pi^-$

Można je rozróżnić rekonstruując topologię przypadku.

Supersymetria

Teorie supersymetryczne zakładają, że każda znana (dzisiaj) cząstka ma (jeszcze) nieodkrytego partnera:

fermion (spin połówkowy) ⇔ **bozon** (spin całkowity)

Atrakcyjność supersymetrii:

- elegancja symetrii
- wyjaśnienie małej masy higgsa
- krok w stronę Wielkiej Unifikacji
- możliwość wyjaśnienia ciemnej materii we Wszechświecie (neutralino)

Najprostszy z modeli,

"Minimal Sypersymmetric Standard Model" (MSSM), przewiduje istnienie pięciu bozonów Higgsa:

 h^{0} , H^{0} , A^{0} , H^{+} , H^{-}

Supersymetryczne higgsy

Poszukiwać ich można metodami podobnymi jak w przypadku H_{MS}.

Pojawiają się jednak nowe możliwości, np. rozpad higgsa na 2 leptony.

Możliwości odkrycia supersym. higgsa

Supercząstki

Istnienie supercząstek powinno przejawić się bogactwem spektakularnych procesów z brakującą energią, obfitujących w wysokoenergetyczne dżety i leptony o nietypowych spektrach.

Przykład:

"urwany" rozkład $M_{\ell\ell}$ w rozpadzie

 $\chi_2^0 \rightarrow \chi_1^0 \ \ell^+ \ell^-$

SUSY event with 3 leptons + 2 Jets signature

Inclusive $\ell^+\ell^-$ + E_t^{miss} final states

W LHC można będzie poszukiwać skwarków i gluin do M~2.2 TeV, sleptonów do M~350 GeV.

Można też będzie przebadać zakres masy neutralina, w którym może ono stanowić zimną, ciemną materię Wszechświata:

 $0.15 < \Omega h^2 < 0.4$

Supersymetria, jeżeli istnieje, będzie niemal na pewno odkryta w LHC.

Selekcja przypadków

W ciągu 10 lat pracy LHC zajdzie 10¹⁷ zderzeń pp.

Zaobserwowanie 10 "egzotycznych" przypadków może stanowić epokowe odkrycie "nowej fizyki".

Należy jednak umieć odszukać owe 10 przypadków wśród wszystkich 10¹⁷.

Szukanie igły w stogu siana?

- typowa igła 5 mm³
- typowy stóg siana 50 m³

 $igla : stóg = 1 : 10^{10}$

Poszukiwanie "nowej fizyki" w LHC to szukanie igły w milionie stogów siana.

Łamigłówka

18 nałożonych zderzeń pp,

widzianych przez wewnętrzną część krzemowego detektora mikropaskowego.

Wśród nich rozpad cząstki Higgsa na 4 miony.

Znajdź 4 proste ślady.

Rozwiązanie łamigłówki

Zrekonstruowane ślady o p_t > 2 GeV.

Wśród nich dobrze widoczne 4 miony z rozpadu Higgsa.

Rozwiązanie możliwe jeśli zajętość detektora ~1%

- \rightarrow powierzchnia mikropaska ~1mm²
- \rightarrow >10⁷ kanałów odczytu

CMS a inne eksperymenty

detektor	l. kanałów	zajętość	przypadek
mozaikowy	80 000 000	0.01 %	100 kB
mikropaskowy	16 000 000	3 %	700 kB
wczesnych kaskad	512 000	10 %	50 kB
kalorymetry	125 000	5 %	50 kB
mionowy	1 000 000	0.1 %	10 kB
całkowita wielkoś	1 MB		

Strumień danych kontrolnych CMS (temperatura, napięcie itp.) jest porównywalny ze strumieniem wszystkich danych jednego ze współczesnych eksperymentów LEP (100 kB/s)

Ciężkie jony w CMS

CMS to także detektor ciężkich jonów

	рр	00	Ca Ca	Nb Nb	Pb Pb
A	1	16	40	93	207
\mathcal{L} [cm ⁻² s ⁻¹]	10 ³⁴	3.2·10 ³¹	2.5·10 ³⁰	9·10 ²⁸	10 ²⁷
f [kHz]	550 000	32 000	5200	400	7.6

zajętości	20 × p p	Pb Pb central
cząstek/[η]	20 × 5	8000
pixel r=7cm	0.024 %	0.53 %
pixel r=11cm	0.024 %	0.28 %
MSGC r=1m	1 %	10 %
kalorymetry	5 %	100 %

Elastyczność trygera i systemu zbierania danych CMS pozwala na rejestrację zderzeń ciężkich jonów.

Dużo większa niż w przypadku pp zajętość detektora jest kompensowana przez mniejszą częstość zderzeń.

Redukcja on-line liczby przypadków i objętości danych zapewnia podobną jak dla pp wielkość przypadku (~1 MB) i częstość zapisu (~100 przypadków/s).

System wyzwalania (tryger)

Nowoczesne systemy pamięci masowej pozwalają zapisywać ~100 MB/s.

Spośród ~10⁹ przypadków zaobserwowanych w ciągu każdej sekundy jedynie 100 może być zapisanych.

Wyboru dokonuje system wyzwalania zwany trygerem.

TRYGER jest to dwuwartościowa funkcja

- zarejestrowanych danych
- stanu detektora
- badanej fizyki

Ponieważ nie wszystkie dane są natychmiast dostępne a funkcja jest skomplikowana, T(.) jest obliczane w kolejnych przybliżeniach zwanych

stopniami trygera

Do odrzucenia przypadku wystarczy ograniczona dokładność, do następnego stopnia przechodzą więc tylko przypadki z decyzją *"zapisać"*.

Selekcja przypadków

Liczba procesorów w farmie CMS jest porównywalna z liczbą wszystkich stacji roboczych i komputerów osobistych w CERNie w 1995 roku (~4000).

Przetwarzanie potokowe

Tryger musi zanalizować dane z każdego zderzenia

- co 25ns musi zapaść decyzja czy je zapisać
- Jej wypracowanie wymaga jednak dłuższego czasu.

Rozwiązanie problemu:

przetwarzanie potokowe, czyli "taśma produkcyjna":

- algorytm podzielony jest na kroki wykonywalne w 25ns;
- procesor stanowi łańcuch elementów, z których każdy wykonuje jeden krok algorytmu w 25ns i przekazuje wynik następnemu;
- w ten sposób przetwarzane dane płyną przez procesor ~3μs, a wyniki pojawiają się na jego wyjściu co 25ns;
- pełne dane czekają na decyzję trygera, płynąc synchronicznie w pamięci potokowej.

Przepływ danych w CMS

1 TB = 1 terabajt = 10^{12} bajtów 1 PB = 1 petabajt = 10^{15} bajtów 1 GIPS = 10⁹ instrukcji/s 1 TIPS = 10¹² instrukcji/s

Dystrybutor

Dystrubutor

to "górka rozrządowa" systemu zbierania danych.

Jego zadaniem jest zebranie danych dotyczących danego przypadku ze wszystkich części detektora i przesłanie ich do określonego procesora.

moduły odczytu różnych części detektora

farma procesorów

przepustowość:

500 Gigabit/s

jest równoważna ilości danych przesyłanych przez całą dzisiejszą telekomunikację europejską.

Ewolucja systemów zbierania danych

Ilość danych przepływających przez system odczytu CMS w ciągu 5 minut pracy LHC jest porównywalna z całością danych przesłanych przez wszystkie sieci w CERNie w ciągu całego 1995 roku.

Rozwój technologii

Moc obliczeniowa procesorów wzrasta 10 razy co 5 lat Pojemność pamięci wzrasta 4 razy co 2 lata Cała moc obliczeniowa CERNu w 1980 roku była mniejsza niż jednego współczesnego komputera osobistego.

Harmonogram prac

Skala przedsięwzięcia wymaga aby projekt techniczny był gotowy na 8 lat przed uruchomieniem eksperymentu!

Aby urządzenie nie było przestarzałe już w momencie oddania do użytku, w czasie projektowania należy przewidzieć i uwzględnić możliwy rozwój technologii.

Cały system wyzwalania i zbierania danych CMS zawiera ponad 10 000 modułów elektronicznych.

Jeżeli moduł psułby się średnio raz na 3 lata, codziennie należałoby wymieniać 10 modułów.

Podsumowanie

Próba odkrycia "Nowej Fizyki" wymaga sięgnięcia do bardzo <mark>wysokich energii</mark> i poszukiwania niezwykle <mark>rzadkich zjawi</mark> s	14 TeV sk σ∼fb
Połączenie tych dwóch wymagań stanov dla najnowocześniejszych technologii informatycznych i telekomunikacyjnych:	vi wyzwanie
<u>wysoka energia:</u>	
 duża liczba produkowanych cząstek 	~100/przypadek
 precyzyjny pomiar w szerokim zakresie dynamicznym 	~100µ/10m
<u>poszukiwanie rzadkich zjawisk:</u>	
 olbrzymia częstość oddziaływań 	~1 GHz
 nakładanie się oddziaływań 	10-20
 mały stosunek sygnału do tła 	1:10 ¹¹ - 1:10 ¹⁶
<u>wynikające z powyższego wymagania te</u>	<u>chnologiczne:</u>
 sterowanie przepływem olbrzymiej ilo 	ości danych 500 Gbits/s

• analiza przypadków w czasie rzeczywistym

	selekcja 1:10 ⁷
 gigantyczna moc obliczeniowa 	5 TIPS
 super-pojemna pamięć masowa 	1 PB/rok

Spełnienie tych wymagań przez detektory CMS i ATLAS pozwala żywić nadzieję na odkrycie "Czegoś Nowego" w LHC

Reklama

Jeżeli pociąga cię

- fizyka przy najwyższych energiach
- dostęp do najświeższych danych
- współpraca z największym laboratorium świata CERN

zgłoś się do nas!

Grzegorz Wrochna

wrochna@fuw.edu.pl

http://cmsdoc.cern.ch/~wrochna/

pokoj 108 w pawilonie IPJ, tel. 254

Prowadzimy

- trzecią pracownię
- pracownię przedmagisterską
- prace magisterskie
- doktoraty

w *makresie*

- fizyka CMS
- symulacja detektora CMS
- oprogramowanie symulacyjne i rekonstrukcyjne CMS

Razzem

- znajdziemy higgsa
- złamiemy CP w sektorze b
- sprawdzimy supersymetrię
- wytworzymy plazmę kwarkowo-gluonową
- odkryjemy Nową Fizykę !