Kolegium Fizyki Nauczycielskiej

27.04.1999

Grzegorz Wrochna

Instytut Problemów Jądrowych im. A.Sołtana

wrochna@fuw.edu.pl http://cmsdoc.cern.ch/~wrochna

Fizyka cząstek elementarnych w XXI wieku

- Struktura materii
- Podstawowe oddziaływania
- Obecny stan wiedzy
- Znaki zapytania
- Narzędzia badawcze
- Plany na XXI wiek

Nowe cząstki

Na początku lat 30-tych wydawało się, że wszechświat jest zbudowany tylko z trzech rodzajów cząstek:

elektron, proton, neutron.

Wkrótce odkryto jednak tyle nowych cząstek, że zabrakło liter w alfabetach łacińskim i greckim do ich oznaczania:

Pojawiła się wątpliwość: czy wszystkie te cząstki są rzeczywiście <u>elementarne</u>?

"Powtórka Mendelejewa"

Powtórzyła się historia Tablicy Mendelejewa.

Cząstki zaczęły układać się w struktury odzwierciedlające ich własności.

Struktury te udało się wyjaśnić zakładając istnienie cząstek "jeszcze bardziej elementarnych": kwarków.

np. proton = uud neutron = udd

Współczesna tablica cząstek

kwarki						ładunek
u	up górny	С	<mark>charm</mark> powabny	t	top szczytowy	+2/3
d	<mark>down</mark> dolny	S	<mark>strange</mark> dziwny	b	<mark>beauty</mark> piękny	-1/3

leptony						ładunek
ν_{e}	neutrino elektronowe	ν_{μ}	neutrino mionowe	v_{τ}	neutrino taonowe	0
e	elektron	μ	mion	τ	taon	-1

+ ich antycząstki o przeciwnych ładunkach

Unifikacja oddziaływań

- QED elektrodynamika kwantowa
- QCD chromodynamika kwantowa

Sytuacja obecna

Model Standardowy (SM) dobrze opisuje oddziaływania elektrosłabe i silne. Dotychczas nie zaobserwowano żadnych znaczących odchyleń od jego przewidywań (prócz zagadki neutrin).

Ma jednak wady:

- ~20 wolnych parametrów
- masy cząstek generowane są przez mechanizm Higgsa nie wyjaœniony wewnątrz SM
- cząstka Higgsa nie została (jeszcze?) odkryta
- SM nie wyjaśnia też
 - istnienia trzech pokoleń fermionów
 - mieszania pomiędzy pokoleniami

Strategia na najbliższą przyszłość:

- znaleźć cząstke Higgsa lub wykluczyć jej istnienie w obszarze dopuszczalnym przez teorię (~1 TeV)
- poszukiwać odchyleń od Modelu Standardowego
- poszukiwać nowych cząstek (~50 GeV ~5 TeV)

Potrzebne narzędzia

- akcelerator
 - duża energia
 - szeroki zakres energii
 - duża świetlność
- detektory
 - uniwersalność (e, γ , μ , dżety, brakująca energia)
 - granularność (duża liczba cząstek)
 - szybkość (duża świetlność)

Akcelerator LHC

Wykres Livingstona 10¹⁸ $(SSC) \times$ 🔊 LHC Akceleratory hadronowe równoważna energia wiązki [eV] (**Colliders**) 10^{15} **TeVATRON** SPPS 1012 SR (□Strong Focus Synchrotrons) ak Focus Synchrotrons) 10⁹ Synchro-cyclotrons) (#Linacs) %Electrostatic Generators) Cyclotrons (ORectifier Generators) 10^{6} 1920 1940 1960 1980 2000 2020 rok

Użycie coraz to nowych technologii umożliwia szybki wzrost możliwosci akceleratorów.

Zastosowanie magnesów nadprzewodzących w istniejącym tunelu LEP (CERN, Genewa) pozwoli zderzać protony z \sqrt{s} =14 TeV.

Obecne i przyszłe akceleratory

symbol	<mark>nazwa</mark> laboratorium, miejsce	cząstki	energia TeV	długość km	start
TeVatron	Fermilab, Chicago	р р [_]	2	6	1987
LEP	Large Electron-Positron Collider, CERN, Genewa	e ⁺ e ⁻	0,1 - 0,2	27	1989
HERA	Hadron-Electron Ring Accelerator, DESY, Hamburg	e [±] p	0,3	6,3	1992
LHC	Large Hadron Collider CERN, Geneva	рр	14	27	2005
NLC	Next Linear Collider DESY, Japonia, USA	e ⁺ e ⁻	0,5 - 1,5	30-50	2010?
MC	Muon Collider, USA	$\mu^+\mu^-$	0,5	1,2	2015?
VLHC	Very LHC, USA	рр	100	100-600	2020?
LEPxLHC	CERN, Genewa	e [–] p	1,3	27	2025?
NNLC	Next NLC	e ⁺ e ⁻	5		2030?
NMC	Next MC	μ+μ_	4	7	2035?

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Selekcja przypadków

W ciągu 10 lat pracy LHC zajdzie 10¹⁷ zderzeń pp.

Zaobserwowanie 10 "egzotycznych" przypadków może stanowić epokowe odkrycie "nowej fizyki".

Należy jednak umieć odszukać owe 10 przypadków wśród wszystkich 10¹⁷.

Szukanie igły w stogu siana?

- typowa igła 5 mm³
- typowy stóg siana 50 m³

 $igla : stóg = 1 : 10^{10}$

Poszukiwanie "nowej fizyki" w LHC to szukanie igły w milionie stogów siana.

Identyfikacja cząstek

Cząstki długożyciowe identyfikujemy obserwując jak odziaływują z materią:

- cząstka naładowana ślad
- elektron, foton kaskada elektromagnetyczna
- hadron (p, n, π, K) kaskada hadronowa

Detektor uniwersalny składa się więc zwykle z 4 części:

- wewnętrzny detektor śladowy ("traker")
- kalorymetr elektromagnetyczny
- kalorymetr hadronowy
- zewnetrzny detektor śladowy (det. mionowy)

	γ	e	ν	p ,π, K	n	μ
traker	-	+	I	+	_	+
kalorymetr elektromag.	+	+		—	_	_
kalorymetr hadronowy	_		_	+	+	_
detektor mionowy	_	_	_	_	_	+

Obecność neutrina można rozpoznać jedynie po "brakującej energii" — pozornym złamaniu zasady zachowania.

Proton, kaon i pion można odróżnić wyznaczając masę cząstki, zmierzywszy uprzednio jej energię i pęd:

$$m^2 = E^2/c^4 - p^2/c^2$$

Identyfikacja cząstek

Eksperyment CMS

Compact Muon Solenoid - to detektor przeznaczony do badania zderzeń proton-proton w akceleratorze LHC.

Podstawowe założenia projektowe:

- 1. Bardzo dobry <u>system mionowy</u> – precyzja pomiaru, hermetyczność, redundancja
- 2. Najlepszy możliwy kalorymetr elektromagnetyczny – zdolność rozdzielcza, jednorodność, granularność
- 3. Wysokiej jakości <u>detektor centralny</u> – gęstość próbkowania, precyzja pomiaru
- 4. Hermetyczny kalorymetr hadronowy

Budowa detektora CMS

Cząstki krótkożyciowe

Cząstki krótkożyciowe badamy obserwując produkty ich rozpadu. Jeżeli znamy energie i pędy cząstek wtórnych to z zasad zachowania możemy wyliczyć energię, pęd i masę cząstki pierwotnej.

Jest to standardowa metoda odkrywania nowych cząstek:

1. Zastanawiamy się na jakie cząstki mogłaby się ona rozpadać.

2. Dla każdego przypadku, w którym takie cząstki pojawiły się wyliczamy masę hipotetycznej cząstki pierwotnej i zaznaczamy ją na wykresie.

Jeżeli rzeczywiście była ona wytworzona w części obserwowanych przypadków, to na tle przypadkowych kombinacji dających rozmaite masy pojawi się "pik" w miejscu masy poszukiwanej cząstki.

$H \rightarrow \gamma \gamma$ (80 < M_H <140 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptony (130<M_H<500 GeV)

Przypadku z czterema wysokoenergetycznymi leptonami ($e \$ lub μ) nie da się nie zauważyć.

Zwłaszcza pewna identyfikacja mionów ("złoty kanał") pozwala niemal całkowicie wyeliminować tło. *Precyzja:*

σ (M_H~170 GeV) = 1 GeV.

Supersymetria

Teorie supersymetryczne zakładają, że każda znana (dzisiaj) cząstka ma (jeszcze) nieodkrytego partnera:

fermion (spin połówkowy) ⇔ **bozon** (spin całkowity)

Atrakcyjność supersymetrii:

- elegancja symetrii
- wyjaśnienie małej masy higgsa
- krok w stronę Wielkiej Unifikacji
- możliwość wyjaśnienia ciemnej materii we Wszechświecie (neutralino)

Najprostszy z modeli,

"Minimal Sypersymmetric Standard Model" (MSSM), przewiduje istnienie pięciu bozonów Higgsa:

 h^{0} , H^{0} , A^{0} , H^{+} , H^{-}

Supercząstki

Istnienie supercząstek powinno przejawić się bogactwem spektakularnych procesów z brakującą energią, obfitujących w wysokoenergetyczne dżety i leptony o nietypowych spektrach.

Przykład:

"urwany" rozkład $M_{\ell\ell}$ w rozpadzie

 $\chi_2^0 \rightarrow \chi_1^0 \ \ell^+ \ell^-$

SUSY event with 3 leptons + 2 Jets signature

Inclusive $\ell^+\ell^-$ + E_t^{miss} final states

CMS a inne eksperymenty

detektor	l. kanałów	zajętość	przypadek
mozaikowy	80 000 000	0.01 %	100 kB
mikropaskowy	16 000 000	3 %	700 kB
wczesnych kaskad	512 000	10 %	50 kB
kalorymetry	125 000	5 %	50 kB
mionowy	1 000 000	0.1 %	10 kB
całkowita wielkoś	1 MB		

Strumień danych kontrolnych CMS (temperatura, napięcie itp.) jest porównywalny ze strumieniem wszystkich danych jednego ze współczesnych eksperymentów LEP (100 kB/s)

System wyzwalania (tryger)

Nowoczesne systemy pamięci masowej pozwalają zapisywać ~100 MB/s.

Spośród ~10⁹ przypadków zaobserwowanych w ciągu każdej sekundy jedynie 100 może być zapisanych.

Wyboru dokonuje system wyzwalania zwany trygerem.

TRYGER jest to dwuwartościowa funkcja

- zarejestrowanych danych
- stanu detektora
- badanej fizyki

Ponieważ nie wszystkie dane są natychmiast dostępne a funkcja jest skomplikowana, T(.) jest obliczane w kolejnych przybliżeniach zwanych

stopniami trygera

Do odrzucenia przypadku wystarczy ograniczona dokładność, do następnego stopnia przechodzą więc tylko przypadki z decyzją *"zapisać"*.

Przepływ danych w CMS

1 TB = 1 terabajt = 10^{12} bajtów 1 PB = 1 petabajt = 10^{15} bajtów 1 GIPS = 10⁹ instrukcji/s 1 TIPS = 10¹² instrukcji/s

Dystrybutor

Dystrubutor

to "górka rozrządowa" systemu zbierania danych.

Jego zadaniem jest zebranie danych dotyczących danego przypadku ze wszystkich części detektora i przesłanie ich do określonego procesora.

moduły odczytu różnych części detektora

farma procesorów

przepustowość:

500 Gigabit/s

jest równoważna ilości danych przesyłanych przez całą dzisiejszą telekomunikację europejską.

Harmonogram prac

Skala przedsięwzięcia wymaga aby projekt techniczny był gotowy na 8 lat przed uruchomieniem eksperymentu!

Aby urządzenie nie było przestarzałe już w momencie oddania do użytku, w czasie projektowania należy przewidzieć i uwzględnić możliwy rozwój technologii.

Cały system wyzwalania i zbierania danych CMS zawiera ponad 10 000 modułów elektronicznych.

Jeżeli moduł psułby się średnio raz na 3 lata, codziennie należałoby wymieniać 10 modułów.

Podsumowanie

Próba odkrycia "Nowej Fizyki" wymaga sięgnięcia do bardzo <mark>wysokich energii</mark> i poszukiwania niezwykle <mark>rzadkich zjawi</mark> s	14 TeV sk σ∼fb
Połączenie tych dwóch wymagań stanov dla najnowocześniejszych technologii informatycznych i telekomunikacyjnych:	vi wyzwanie
<u>wysoka energia:</u>	
 duża liczba produkowanych cząstek 	~100/przypadek
 precyzyjny pomiar w szerokim zakresie dynamicznym 	~100µ/10m
<u>poszukiwanie rzadkich zjawisk:</u>	
 olbrzymia częstość oddziaływań 	~1 GHz
 nakładanie się oddziaływań 	10-20
 mały stosunek sygnału do tła 	1:10 ¹¹ - 1:10 ¹⁶
<u>wynikające z powyższego wymagania te</u>	<u>chnologiczne:</u>
 sterowanie przepływem olbrzymiej ilo 	ości danych 500 Gbits/s

• analiza przypadków w czasie rzeczywistym

	selekcja 1:10 ⁷
 gigantyczna moc obliczeniowa 	5 TIPS
 super-pojemna pamięć masowa 	1 PB/rok

Spełnienie tych wymagań przez detektory CMS i ATLAS pozwala żywić nadzieję na odkrycie "Czegoś Nowego" w LHC