UMK Toruń, 21.01.2002

Co słychać w fizyce cząstek?

Model Standardowy (Nobel'99)

- odziaływania i cząstki (t, ν_τ)
- precyzja pomiarów (g_μ-2)

• poszukiwanie higgsa (LEP 2001)

Oscylacje neutrin

Super-Kamiokande

Przyszłość - LHC

- higgs
- SUSY
- wyższe wymiary

Pominę:

Detektory kaskad atm.: Agasa, Auger, CASA, Kascade

Teleskopy neutrinowe: Amanda, Antares, Nestor

Detektory na satelitach: AMS

Detectory WIMPów: Cresst, Dama, CDMS, Genius Edelweiss, + 20 innych

Grzegorz Wrochna

Instytut Problemów Jądrowych w Świerku http://cern.ch/wrochna

Unifikacja oddziaływań

- QED elektrodynamika kwantowa
- QCD chromodynamika kwantowa

Oddziaływania elementarne

Grawitacja — ogólna teoria względności

znakomicie potwierdzona na dużych skalach ale nic nie wiemy o grawitacji w skali mikro

Elektromagnetyzm — elektrodynamika kwantowa

najdokładniejsza ze znanych teorii mikroświata sprawdzona z dokładnością do 10⁻¹⁰

Teoria odziaływań elektrosłabych

sprawdzona do <1%, ale nie wyjaśnia dlaczego cząstki mają masę najlepszy pomysł: mechanizm Higgsa, ale przewidywana cząstka Higgsa jeszcze nie odkryta

Odziaływania silne — chromodynamika kwantowa

dobrze pracuje w dużych energiach, ale nie umiemy wykonać rachunków analit. dla małych energii

Połączenie teorii odziaływań elektrosłabych (+ mechanizm Higgsa) z chromodynamiką kwantową

Model Standardowy

znakomicie opisuje wyniki wszystkich eksperymentów, ale ... jest *brzydki*.

Elementary particles

quarks, spin 1/2						charge
u	up 2.7 MeV	С	<mark>charm</mark> 1.2 GeV	t	<mark>top</mark> 174 GeV	+2/3
d	down 5 MeV	S	<mark>strange</mark> 100 MeV	b	<mark>beauty</mark> 4.2 GeV	-1/3

leptons, spin 1/2						charge
ν_{e}	neutrino e < 15 eV	ν_{μ}	<mark>neutrino</mark> μ < 170 keV	v_{τ}	neutrino τ < 18 MeV	0
e	electron 511 keV	μ	<mark>muon</mark> 106 MeV	τ	<mark>tau</mark> 1.78 GeV	-1

+ antiparticles with opposite charges

bosons, spin 1							
γ	photon m=0	Z ⁰	boson Z 92.2 GeV	W [±]	boson W 80.4 GeV	g	gluon m=0

Prompt Neutrino Beam Line

n_t interaction selection

• No *e*, **m** from primary vertex

Tau ID: ~76% have visible track
 86% of decays are single charge

"kink" > 5 mrad (mean 110 mrad) $P_{daughter} > 1 \text{ GeV/c}$ $p_t > 250 \text{ MeV/c}$ for hadron daughter > 100 MeV/c for lepton daughter

Nobel Prize 1999 in physics Gerardus 't Hooft Martinus Veltman

for developing calculus of particle physics in the 70-ties

Fit to all Electroweak Data

Full electroweak fit of all measurements, including M_W and M_{top}

Overall consistency χ^2 /d.o.f is 22.9/15 (8.6% probability)

Sizeable contribution to χ^2 comes from quark asymmetries

Acceptable overall consistency \rightarrow go on to see what fit says about M_H

	Measurement	Pull	Pull
$\Delta \alpha^{(5)}_{(m_{-})}$	0.02761 + 0.00036	35	<u>-3-2-10123</u>
m ₋ [GeV]	91.1875 ± 0.0021	.03	
Г., [GeV]	2.4952 ± 0.0023	48	_
$\sigma_{\rm bad}^0$ [nb]	41.540 ± 0.037	1.60	
R _i	20.767 ± 0.025	1.11	
A ^{0,I}	0.01714 ± 0.00095	.69	-
$A_{I}(P_{\tau})$	0.1465 ± 0.0033	54	_
R _b	0.21646 ± 0.00065	1.12	
R	0.1719 ± 0.0031	12	
A ^{0,b}	0.0990 ± 0.0017	-2.90	
A ^{0,c} _{fb}	0.0685 ± 0.0034	-1.71	
A _b	0.922 ± 0.020	64	-
A _c	0.670 ± 0.026	.06	
A _l (SLD)	0.1513 ± 0.0021	1.47	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	.86	
m _W ^(LEP) [GeV]] 80.450 ± 0.039	1.32	
m _t [GeV]	174.3 ± 5.1	30	•
m _W ^(TEV) [GeV] 80.454 ± 0.060	.93	
sin ² θ _W (νN)	0.2255 ± 0.0021	1.22	
Q _W (Cs)	-72.50 ± 0.70	.56	-
			-3 -2 -1 0 1 2 3

Summer 2001

Anomalny moment magnetyczny mionu

$$\mu = g \cdot \frac{e}{2mc} \cdot \frac{h}{2}$$
$$g \approx 2$$
$$a_{\mu} = \frac{g-2}{2}$$
$$\mu^{exp} = 11659202 \cdot 10^{-7}$$

 $a_{\mu}^{exp} = 11659202 \cdot 10^{-10}$ $a_{\mu}^{teor} = 11659159 \cdot 10^{-10}$ $\Delta = (43\pm16) \cdot 10^{-10}$

Rozbieżność prawie 3o.

Czyżby ślad fizyki spoza Modelu Standardowego?

Muon Anomalous Magnetic Moment g-2

Brookhaven E821 at "magic" γ =29.3

$$\frac{g-2}{2} = a_{\mu} = \frac{\omega_a m_{\mu} c}{e \langle B \rangle}$$

 ω_a muon spin precession frequency $\langle B \rangle$ mean bending field

Observe time spectrum of *e* with *E*_{*lab*} > 2 GeV from the μ decay

 $\langle B \rangle$ from NMR probes fixed & trolley-mounted find mean proton NMR frequency ω_p

A "g-2 Crisis"?

Physicists Announce Possible Violation of Standard Model of Particle Physics BNL News Release 8 February 2001

New measurements have provided a powerful stimulus to theory

The Standard Model lives on, for now...

Constraining the SM Higgs?

Fit to all electroweak data in Standard Model framework

Theory uncertainty includes effect of complete fermionic two-loop M_{W} : small effect for M_{W} , controversial problem for

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \kappa_{\text{W}} \left(1 - \frac{M_{\text{W}}^2}{M_Z^2} \right)$$

Need equivalent calculations for Z widths and effective mixing angle Freitas, Hollik, Walter, Weiglein

From EW fit, obtain M_H = 88⁺⁵³₋₃₅ GeV M_H < 196 GeV (95% CL)

If use alternative theory-driven $\Delta \alpha_{had} = 0.02738 \pm 0.00020$ limit moves to 222 GeV Dave Charlton – EPS 01 – Budapest

Higgs search

Reconstructed mass distributions

Q= P (data | singal+background) P (data | background)

LEP combined result

Observation vs. simulated experiments for b-only, $b+s(m_h = 115.6 \text{ GeV})$

Compatibility with

- \rightarrow background, $1 CL_b = 3.5\%$
- ightarrow background + $m_{
 m h}$ = 115.6 GeV, CL $_{
 m s+b}$ = 43.5%

Case 1: Accumulating Background-Only:

Case 2: Accumulating Background+Signal:

LEP-wide Higgs searches

Oscylacje neutrin

Teleskop neutrinowy Super-Kamiokande

- 50 000 ton wody
- 11 000 fotopowielaczy

rejestrujących promieniowanie Czerenkowa produktów odziaływania neutrin

Detekcja neutrin słonecznych, atmosferycznych i z supernowych

Obserwacja oscylacji neutrin \Rightarrow

neutrina mają masę!

największe odkrycie fizyki cząstek ostatnich lat

Super Kamiokande

Muon - Electron Identification

muon

electron

Mieszanie neutrin

Stany własne zapachu v_e, v_μ, v_τ , nie muszą być tożsame ze stanami

własnymi masy v₁,v₂,v₃, np.
$$\begin{bmatrix} v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} v_{2} \\ v_{3} \end{bmatrix}$$

Jeżeli ν_2,ν_3 mają różne masy to ich względne fazy w ν_μ,ν_τ oscylują z różnymi częstościami.

W ten sposób $v_{\mu} = v_2 \cos \theta + v_3 \sin \theta$

może przeewoluować do $-v_2 \sin \theta + v_3 \cos \theta = v_{\tau}$

Atmosferyczne ν_{μ} obserwujemy jako ν_{μ} i $\nu_{\tau}.$

W ogólności:
$$\begin{bmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{bmatrix} = \begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix}$$

Słoneczne ν_e obserwujemy jako ν_e, ν_μ i $\nu_\tau.$

Atmospheric Oscillations

J. Goodman – LP01

Low Energy Sample

Multi-GeV Sample

J. Goodman – LP01

Super-Kamiokande - atmospheric v

The Solar Neutrino Problem

Solar Neutrinos in Super-K

- 1258 day sample (22.5 kiloton fiducial volume)
- Super-K measures:
 - The flux of ⁸B solar neutrinos
 - Energy spectrum and direction of recoil electron
 - Energy spectrum is flat from 0 to T_{max}
 - The zenith angle distribution
 - Day / Night rates
 - Seasonal variations

Seasonal/Sunspot Variation

J. Goodman – LP01

Oscillation parameters based on flux of Homestake, GALLEX, SAGE and SK

ν_e→ν_µ(ν_τ) 99% C.L.

Combined Results ν_e to $\nu_{\mu,\tau}$

Macierze mieszania

Macierz mieszania neutrin okazuje się być ~biliniowa:

$$\begin{bmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix}$$

zupełnie różna od macierzy mieszania kwarków:

$$\begin{bmatrix} d'\\ s'\\ b' \end{bmatrix} = \begin{bmatrix} -1 & \lambda & -A\lambda^3\\ -\lambda & -1 & A\lambda^2\\ -\lambda\lambda^3 & -A\lambda^2 & 1 \end{bmatrix} \begin{bmatrix} d\\ s\\ b \end{bmatrix}$$

gdzie λ =0.224, $A\lambda^2$ =0.0036

K2K = 1st Generation Long Baseline Experiment

Super Kamiokande

Water Cherenkov detector Total mass: 50 kton Inner mass: 32 kton Fiducial mass: 22.5 kton Accelerator: 12 GeV proton synchrotron

Beam intensity: 6' 10¹² protons / pulse
Repetition: 1 pulse / 2.2 sec
Pulse width: 1.1 ms (9 bunches)

Horn-focused wide-band beam

Average neutrino energy: 1.3 GeV

Near detector: 300 m from the target
Far detector (Super-Kamiokande): 250 km from the target
Goal: 10²⁰ protons on target

KEK

27

Katastrofa w Super-Kamiokande 12.11.2001

Pęknięcie fotopowielacza wywołało falę uderzeniową 60 Atm, która zniszczyła 7000 z 11000 fotopowielaczy

Odbudowa: 5000 fotopowielaczy ⇒ wyższy próg na ∨ słoneczne i supernowe, ale wystarczający do atmosferycznych, K2K i rozpadu protonu

Ostatnie wydarzenia

NA48 (CERN), KTeV (Fermilab)

Obserwacja bezpośredniego łamania CP dla kaonów

 $Re(\epsilon'/\epsilon) = (17.7 \pm 1.8) \cdot 10^{-4}$

- ϵ : $K^0_L \rightarrow K^0_S \rightarrow \pi\pi$ łamanie CP przez mieszanie kaonów
- ϵ ': $K^0_L \rightarrow \pi \pi$ bezpośrednie łamanie CP

⇒ bariogeneza

BELLE (KEK, Tsukuba), BABAR (SLAC, Stanford)

Obserwacja łamania CP dla kwarków b (w rozpadach B⁰_d)

 $sin 2\beta = 0.59 \pm 0.14$

 \Rightarrow bariogeneza

RHIC (Brookhaven)

Uruchomienie akceleratora ciężkich jonów RHIC 130 GeV na parę nukleonów badanie plazmy kwarkowo-glounowej

⇒ wczesne fazy Wszechświata

CDF, D0 (Fermilab)

Rozpoczęcie "run II" TeVatronu — 2 TeV Poszukiwanie higgsa do 180 GeV

Particle physics today

The Standard Model precisely describes both electroweak and strong interactions. No significant deviation from its predictions was observed so far.

<u>But:</u>

- it has ~20 free parameters
- particle masses are generated by Higgs mechanism, not determined within the Standard Model
- Higgs particle was not observed so far
- Standard Model does not explain
 - existence of 3 generations of fermions
 - mixing between different generations

Strategy for the near future:

- find Higgs particle or exclude its existence in the region allowed by theory (~1 TeV)
- look for deviations from the Standard Model
- search for new particles (~50 GeV ~5 TeV)

Needed tools

- accelerator:
 - high energy:
 - wide energy range
 - high luminosity

14 TeV "for free" in pp beams 10³⁴cm⁻²s⁻¹

• detectors:

- ATLAS, CMS, LHC-B, ALICE
- universal (e, γ , μ , jets, missing energy)
- fine grained (large number of particles): ~10⁷ channels

LHC

- fast (high luminosity):

25 ns bunch crossing

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Compact Muon Solenoid @ LHC

projekt i budowa 1990-2006 2000 fizyków z 30 państw 12000 ton, 22x15 m magnes φ=6m, 4T, 1000 A pomiar torów 20-100μm

100 mln kanałów elektroniki mld/s = 10¹⁶/rok zderzeń pp 500 GB/s przetwarzanych danych 100 MB/s = 10 000 GB/dzień zapisanych danych

Selekcja przypadków

W ciągu 10 lat pracy LHC zajdzie 10¹⁷ zderzeń pp.

Zaobserwowanie 10 "egzotycznych" przypadków może stanowić epokowe odkrycie "nowej fizyki".

Należy jednak umieć odszukać owe 10 przypadków wśród wszystkich 10¹⁷.

Szukanie igły w stogu siana?

- typowa igła 5 mm³
- typowy stóg siana 50 m³

 $igla : stóg = 1 : 10^{10}$

Poszukiwanie "nowej fizyki" w LHC to szukanie igły w milionie stogów siana.

Łamigłówka

18 nałożonych zderzeń pp,

widzianych przez wewnętrzną część krzemowego detektora mikropaskowego.

Wśród nich rozpad cząstki Higgsa na 4 miony.

Znajdź 4 proste ślady.

Rozwiązanie łamigłówki

Zrekonstruowane ślady o p_t > 2 GeV.

Wśród nich dobrze widoczne 4 miony z rozpadu Higgsa.

Rozwiązanie możliwe jeśli zajętość detektora ~1%

- \rightarrow powierzchnia mikropaska ~1mm²
- \rightarrow >10⁷ kanałów odczytu

SM higgs — The Trojan Horse

Imagine, that we turn on LHC and we find just SM higgs. We will behave like Trojans finding the Wooden Horse:

- We will anounce it to the world.
- We will celebrate our great victory.
- There will be laurel wreaths for heroes (Nobel) and festivities for the crowd,
- TV shows and newspaper covers ...

But this will be the begining of the end ...

We will be left with

- the Standard Model which works perfectly, but we do not understand why,
- the Higgs mechanism which we do not know where it comes from,
- nonunified forces, random symmetries, and ~20 arbitrary parameters,
- with no hint what is behind,
- no idea what to do next ...

Philosophers on Supersymmetry

Grzegorz Wrochna

Relic $\widetilde{\chi}_1^0$ density contours in mSUGRA

after inclusion of $\tilde{\tau}_R \tilde{\chi}_1^0$ + ...co-annihilation channels - upper limit on cosmologically acceptable m($\tilde{\chi}_1^0$)

- reach at LHC/CMS in various final state topologies

→ upper limit on m_{1/2} \approx 1400GeV thus on m($\tilde{\chi}_1^0$) \approx 600 GeV

Hierarchy problem

Two fundamental scales:

- Electroweak $M_{EW} \sim 10^2 10^3 \text{ GeV}$
- Planck M_{Pl} ~ 10¹⁹ GeV

<u>Observation:</u>

- M_{EW} is established experimentaly
 - EW interactions are tested down to distances $1/M_{EW} \sim 10^{-17}$ cm
- M_{Pl} is just a number

– gravity tested only down to ~ 1 mm, far away from $1/M_{Pl} \sim 10^{-35}$ m

Solution: cut the Gordian Knot!

- There is only one fundamental scale: \mathbf{M}_{EW}
- M_{Pl} is just an effective constant
- Its high value is caused by additional spatial dimentions, compactified at radius R ~ 1 mm

4+n dimensional gravity (ADD)

N.Arkani-Hamed, S.Dimopoulos, G.Dvali, hep-ph/9803315

R — compactification radius $M_{\rm S}$ — 4+n dimensional "Planck scale"

Gravitational potential in 4+n dim space

for small distances r << R

$$V(r) = \frac{m_1 m_2}{M_S^{n+2}} \cdot \frac{1}{r^{n+1}}$$

for large distances r >> R

$$V(r) = \frac{m_1 m_2}{M_s^{n+2} R^n} \cdot \frac{1}{r}$$

This becomes the Newton's law with

$$M_{PI}^2 = M_S^{n+2} R^n$$

Let us put M_S ~ M_{EW} (no hierarchy!)

$$R = 10^{\frac{30}{n} - 17} cm$$

$n\text{=}1 \rightarrow \text{R}\text{=}10^8 \text{ km}$

• Solar System distances, gravity very well tested

 $\textbf{n=2} \rightarrow \textbf{R=0.1} \text{ mm}$

just beyond the current limits

- "Tower" of graviton excitations km_1 where m_1 =400eV for n=1
- ADD gravitons couple to momentum tensor and therefore contibute to most of SM processes
- Gravitons can propagate through other dimension
 ⇒ graviton emission apparently violate energy conservation
- Graviton spin of 2 can point to other dimension
 ⇒ apparent spin 0, 1 or 2
- Cross sections are divergent with s
 ⇒ explicit cut-off required

Ka

mc

COI

Fo

Sir

en

in i

vie

Sir

a Ł

fro

ap

De

WC

sig

wit

pai

ADD signatures & limits

- Supernova cooling (Kamiokande v) **Real Graviton Emission** $-M_{S} > 30 \text{ TeV} (n=2)$ Monojets at hadron colliders $-M_{S} > 4 \text{ TeV} (n=3)$ • Cosmic diffuse γ radiation (G $\rightarrow \gamma \gamma$) $-M_{\rm S} > 100 \, {\rm TeV} \, (n=2)$ $-M_{S} > 5 \text{ TeV} (n=3)$ \mathcal{A} • LEP2: $e^+e^- \rightarrow \gamma G$, ZG Single VB at hadron or e⁺e⁻ colliders $-M_{\rm S} > 1.2 \, {\rm TeV} \, ({\rm n=2})$ $-M_{\rm S} > 0.8$ Tev (n=4) • LEP2: $e^+e^- \rightarrow G \rightarrow ZZ$, ff, $\gamma\gamma$, WW $-M_{\rm S} > 1.2 \, {\rm TeV}$ BOOD GKK • HERA: $ep \rightarrow G \rightarrow ep$ **G**KK G_{кк} 2 $-M_{\rm S}$ > 0.81 - 0.93 TeV
 - Tevatron: $e^+e^- \rightarrow G \rightarrow e^+e^-$, $\gamma\gamma M_S > 1.0 1.1 \text{ TeV}$

Expected:

• Tevatron run II: $e^+e^- \rightarrow gG$ $-M_S > 1.4 \text{ TeV} (n=2)$ $-M_S > 1.15 \text{ TeV} (n=3)$ $-M_S > 1.0 \text{ TeV} (n=4)$

Virtual Graviton Emission Fermion or VB pairs at hadron or e⁺e⁻ colliders

- Gravity strong at y=0 and falls like exp(-ky)
- Gravity scale $\Lambda_{\pi} = M_{Planck} \exp(-k\pi r_c) \sim TeV$ no hierarchy
- Graviton resonances $m_n = x_n k \exp(-k\pi r_c)$, $J_1(x_n)=0$
- $M_{Planck}/M_{electroweak} \Rightarrow kr_{c} \sim 11-12$
- Newton's law \Rightarrow $|R_5| < M_{5D}^2 \Rightarrow$ coupling c < 0.1

Coupling 0.2, 0.1, 0.02, 0.01

Randall - Sundrum gravitons at LHC

Grzegorz Wrochna

Cosmic Particle Accelerators

Supernovae

Supernova remnants

Active Galactic Nuclei

Gamma Ray Bursts

Pulsars, **Plerions**

Microquasars

SYMPOSIUM HOMEPAGE

Symposium Programme

Registration and

Contributed Papers

Accommodation

Other Information

ESO-CERN-ESA Symposium on Astronomy, Cosmology and Fundamental Physics

Garching bei München, Germany March 4-7. 2002

The connections between Astronomy, Cosmology and Fundamental Physics are well known, and become closer every day. Recent exciting developments in these fields include the structures in the cosmic background radiation, evidence for an accelerating Universe, searches for dark matter candidates, evidence for neutrino oscillations, space experiments on fundamental physics, and discoveries of extrasolar planets. ESO, CERN and ESA are thus involved in scientific endeavours and technologies which overlap considerably. This joint Symposium is the first to be co-organized and co-sponsored by all three organizations.

The symposium is meant to give a broad overview of scientific areas of interest to the communities of the three organizations: current observational cosmology including the microwave background fluctuations and new constraints on the cosmological parameters, searches for dark matter, high energy astrophysics (sources and backgrounds), recent developments and prospects in particle physics, fundamental physics from ground and space, extrasolar planets, and future perspectives at ESO, CERN and ESA.

http://www.eso.org/gen-fac/meetings/symp2002/

