Warsztaty Krajowego Funduszu na Rzecz Dzieci

6.03.1999

dr hab. Grzegorz Wrochna

Instytut Problemów Jądrowych im. A.Sołtana

wrochna@fuw.edu.pl http://cmsdoc.cern.ch/~wrochna

Fizyka cząstek elementarnych w XXI wieku

- Struktura materii
- Podstawowe oddziaływania
- Obecny stan wiedzy
- Znaki zapytania
- Narzędzia badawcze
- Plany na XXI wiek

Warto przeczytać

- "Delta", 6/1996
- "Wiedza i Życie", 2/1999
- Przygoda z cząstkami http://www.ifj.edu.pl/edukacja/cpep.html
- European Laboratory for Particle Physics CERN http://www.cern.ch/Public CERN to miejsce narodzin WWW!

Oznaczenia i jednostki

10⁵ = jedynka i pięć zer = 100 000

10⁻⁵ = jedynka na piątym miejscu po przecinku = 0,00001

kilo	k	10 ³	mili	m	10⁻³
mega	Μ	10 ⁶	mikro	μ	10⁻⁶
giga	G	10 ⁹	nano	n	10 ⁻⁹
tera	Т	10 ¹²	piko	р	10⁻¹²
peta	Ρ	10 ¹⁵	femto	f	10⁻¹⁵

W fizyce cząstek ładunek wyrażamy przyjmując za jednostkę wartość ładunku elektronu

 $e = 1,6 \cdot 10^{-19} C$

Jednostką energii jest

```
elektronowolt = 1 \text{ eV} = 1,6 \cdot 10^{-19} \text{ J}
```

= energia elektronu przyspieszonego przez różnicę potencjałów 1 V

Masę cząstek *m* wyraża się w gigaelektronowoltach (GeV) podając równoważną jej energię *E=mc*².

```
1 \text{ GeV} / \text{c}^2 = 1,8 \cdot 10^{-27} \text{ kg}
```

Pierwiastki

Otaczająca nas materia jest zbudowna z ~100 pierwiastków.

W styczniu 1999 w Ośrodku Badań Jądrowych w Dubnej pod Moskwą wytworzono pierwiastek 114.

Zgodnie z przewidywaniami jest wyjątkowo trwały — rozpada się na pierwiastek 112 po czasie ~30s.

Pierwiastka 113 jeszcze nie udało się wytworzyć.

Pierwiastek to zbiór jednakowych atomów (ściślej: atomów o takiej samej liczbie atomowej Z).

Atomy mogą łączyć się w cząsteczki tworząc związki chemiczne.

Pułapka językowa: <u>cząsteczka</u> (chemiczna) jest znacznie większa od <u>czastki</u> (elementarnej).

Pierwiastki układają się w <u>Tablicę Mendelejewa</u> w zadziwiający sposób odzwierciedlającą ich własności.

Struktura Tablicy Mendelejewa pozostawała tajemnicą do chwili powstania <u>mechaniki</u> <u>kwantowej</u>, która wyjaśniła prawa rządzące atomami.

Układ Okresowy Pierwiastków

	1																	18	
	\mathbf{H}_{1}																	₂ He	
1	1,008 Wodór	2											13	14	15	16	17	4,003 Hel	
	₃ Li	₄ Be											₅ B	6 C	7 N	8 0	9 F	10 Ne	ļ
2	6,941 Lit	9,012 Beryl											10,81 Bor	12,011 Węgiel	14,007 Azot	15,999 Tlen	18,998 Fluor	20,179 Neon	
	11 Na	12 Mg											₁₃ Al	₁₄ Si	15 P	16 S	17 CI	18 Ar	
3	22,989 Sód	24,305 Magnez	3	4	5	6	7	8	9	10	11	12	26,982 Glin	28,086 Krzem	30,974 Fosfor	32,066 Siarka	35,453 Chlor	39,948 Argon	
	₁₉ K	₂₀ Ca	₂₁ Sc	22 Ti	₂₃ V	₂₄ Cr	₂₅ Mn	₂₆ Fe	27 Co	₂₈ Ni	₂₉ Cu	₃₀ Zn	₃₁ Ga	₃₂ Ge	33 As	₃₄ Se	₃₅ Br	36 K 1	•
4	39,098 Potas	40,08 Wapń	44,956 Skand	47,90 Tytan	50,941 Wanad	51,996 Chrom	54,938 Mangan	55,847 Żelazo	58,933 Kobalt	58,70 Nikiel	63,546 Miedź	65,36 Cynk	69,72 Ga l	72,59 German	74,922 Arsen	78,96 Selen	79,904 Brom	83,80 Krypto	n
	₃₇ Rb	₃₈ Sr	39 Y	₄₀ Zr	₄₁ Nb	42 Mo	43 Tc	₄₄ Ru	45 Rh	$_{46}$ Pd	₄₇ Ag	$_{48}$ Cd	49 In	₅₀ Sn	₅₁ Sb	₅₂ Te	₅₃ I	₅₄ Xe	ł
5	85,468 Rubid	87,62 Stront	88,906 Itr	91,22 Cyrkon	92,906 Niob	95,94 Molibden	96,906 Technet	101,07 Rubid	102,906 Rod	106,4 Pallad	107,868 Srebro	112,40 Kadm	114,82 Ind	118,69 Cyna	121,75 Antymon	127,60 Tellur	126,905 Jod	131,30 Kseno	n
	₅₅ Cs	56 Ba		72 Hf	₇₃ Ta	₇₄ W	₇₅ Re	₇₆ 0s	₇₇ Ir	₇₈ Pt	₇₉ Au	₈₀ Hg	₈₁ Tl	₈₂ Pb	₈₃ Bi	₈₄ Po	₈₅ At	86 R n	
6	132,905 Cez	137,34 Bar	*	178,49 Hafn	180,948 Tantal	183,85 Wolfram	186,207 Ren	190,2 Osm	192,22 I ryd	195,09 Platyna	196,967 Złoto	200,59 Rtęć	204,37 Tal	207,2 Ołów	208,98 Bizmut	208,892 Polon	209,987 Astat	222,01 Radon	8
	₈₇ Fr	88 Ra		₁₀₄ Rf	₁₀₅ Db	₁₀₆ Sg	₁₀₇ Bh	108 Hs	109 Mt	Uun	Uuu	Uub							
7	223,02	226,025	**	261 Duth orford	263 Dubp	265 Seeberg	264 Behr	269	268 Maitpar	110 271	111	112 277							
	FIGIIS	Rau		Rumenora	Dubli	Seaborg	BUIII	nas	Meither	271	2.2	277							
			Ŧ	C	D	NT I	ъ	C	Б			D	TT	T	-		71	-	
	* La	ntanowce	57 La	₅₈ Ce	59 Pr	60 ^{INd}	61 Pm	62 Sm	63 Eu	₆₄ Ga	65 1 D	66 Dy	67 H0	68 ^{Er}	69 I m	1 70 1	71 r	Lu	
	24		138,906 Lantan	5 140,12 Cer	140,908 Prazeodym	144,24 Neodym	144,913 Promet	150,4 Samar	151,96 Europ	157,25 Gadolin	158,925 Terb	162,50 Dyspoz	164,93 Holm	167,26 Erb	168,934 Tul	4 173, Iterb	04 17 Lu	4,97 tet	
			₈₉ Ac	₉₀ Th	₉₁ Pa	$_{92}$ U	₉₃ Np	₉₄ Pu	₉₅ Am	₉₆ Cm	₉₇ Bk	₉₈ Cf	₉₉ Es	100 Fm	$\mathbf{h}_{101}\mathbf{M}$	[d 102	No 10	₃ Lr	
	** Ak	tynowce	227,028 Aktyn	232,038 Tor	231,036 Proaktyn	238,029 Uran	237,048 Neptun	244,064 Pluton	243,061 Ameryk	247,07 Kiur	247,07 Bekerel	251,08 Kaliforn	254,088 Einstein	257,095 Ferm	258,1 Mendel	259, ew Nob	101 26 el Lo	0,1 rens	

Atom

Atomy pierwiastków charakteryzuje:

- liczba atomowa Z (1..114)
 numer pierwiastka w Tablicy Mendelejewa
- liczba masowa A (1...289)
 ≈ masa danego atomu / masa atomu wodoru

atom = jądro + Z elektronów

jądro = Z protonów + (A-Z) neutronów

obiekt	rozmiar	masa	ładunek
atom	10 ^{–10} m	A GeV	0
jądro	10 ⁻¹⁵ -10 ⁻¹⁴ m	A GeV	+Ze
neutron proton	10 ^{–15} m	1 GeV	+e
elektron	<10 ^{−19} m	0,0005 GeV	- e

Nowe cząstki

Na początku lat 30-tych wydawało się, że wszechświat jest zbudowany tylko z trzech rodzajów cząstek:

elektron, proton, neutron.

Wkrótce odkryto jednak tyle nowych cząstek, że zabrakło liter w alfabetach łacińskim i greckim do ich oznaczania:

Pojawiła się wątpliwość: czy wszystkie te cząstki są rzeczywiście <u>elementarne</u>?

"Powtórka Mendelejewa"

Powtórzyła się historia Tablicy Mendelejewa.

Cząstki zaczęły układać się w struktury odzwierciedlające ich własności.

Struktury te udało się wyjaśnić zakładając istnienie cząstek "jeszcze bardziej elementarnych": kwarków.

np. proton = uud neutron = udd

Współczesna tablica cząstek

kwarki						ładunek
u	up górny	С	<mark>charm</mark> powabny	t	top szczytowy	+2/3
d	<mark>down</mark> dolny	S	<mark>strange</mark> dziwny	b	<mark>beauty</mark> piękny	-1/3

leptony						ładunek
ν_{e}	neutrino elektronowe	ν_{μ}	neutrino mionowe	v_{τ}	neutrino taonowe	0
e	elektron	μ	mion	τ	taon	-1

+ ich antycząstki o przeciwnych ładunkach

Oddziaływania

W życiu codziennym spotykamy tylko dwa odziaływania fundamentalne:

GRAWITACYJNE

działa na wszystkie ciała bez wyjątku

nośnik: grawiton (jeszcze nie odkryty)

przejawy: ciążenie, przyciąganie ciał niebieskich

ELEKTROMAGNETYCZE

działa na ładunki elektryczne

nośnik: foton γ

przejawy: siły magnetyczne, elektryczne, tarcie, sprężystość, lepkość, wiązania chemiczne itp.

W świecie cząstek elementarnych występują dwa nowe odziaływania:

JĄDROWE SŁABE

działa na leptony i kwarki

nośniki: bozony Z⁰, W⁺, W⁻

przejawy: rozpady promieniotwórcze, synteza jądrowa w gwiazdach

JĄDROWE SILNE

działa tylko na kwarki

nośniki: gluony g

przejawy: stabilność jąder atomowych, wiązanie kwarków w protonach i neutronach

Unifikacja oddziaływań

- QED elektrodynamika kwantowa
- QCD chromodynamika kwantowa

Krótka historia fizyki

γ e⁺ γ γ e⁺ γ	10 ⁻¹⁰ m	<10eV	3 [.] 10 ⁷ lat	1900 mechanika kwantowa, fizyka atomowa 1940-50 elektrodynamika kwantowa
6	10 ⁻¹⁵ m	MeV-GeV	3 min.	<mark>1950-65</mark> jądra, hadrony, teorie pola
÷:: @ @	10 ⁻¹⁶ m	>>GeV	10 ⁻⁶ s	<mark>1965-75</mark> kwarki, teorie pola z cechowaniem
	10 ⁻¹⁸ m	100 GeV	10 ⁻¹⁰ s	1970-83 SPS QCD, unifikacja elektrosłaba
3 leptony $\begin{bmatrix} v_e \\ e \end{bmatrix} \begin{bmatrix} v_\mu \\ \mu \end{bmatrix}$	v_{τ}			1990 LEP 3 rodziny fermionów
3 kwarki d s x3 kolory R	t b C B			1995 Tevatron kwark top
pochodzenie mas	10 ⁻¹⁹ m	10 ³ GeV	10 ⁻¹² s	2005 LHC higgs? SUSY?
rozpad protonu?	10 ⁻³² m	10 ¹⁶ GeV	10 ⁻³² s	?? eksp. podziemne?Wielka Unifikacja?
początek Wszechświata	10 ⁻³⁵ m	10 ¹⁹ GeV	10 ⁻⁴³ s	?? ?? grawitacja kwantowa? superstruny?

Obecny stan wiedzy

Grawitacja — ogólna teoria względności

dobrze potwierdzona, ale próby unifikacji z innymi odziaływaniami jeszcze nie uwieńczone sukcesem

Elektromagnetyzm — elektrodynamika kwantowa

najdokładniejsza ze znanych teorii, sprawdzona do 10⁻¹⁰

Teoria odziaływań elektrosłabych

sprawdzona do <1%, ale nie wyjaśnia dlaczego cząstki mają masę najlepszy pomysł: mechanizm Higgsa, ale przewidywana cząstka Higgsa jeszcze nie odkryta

Odziaływania silne — chromodynamika kwantowa

dobrze pracuje w dużych energiach, <mark>ale</mark> nie umiemy wykonać rachunków dla małych energii

Połączenie teorii odziaływań elektrosłabych (+ mechanizm Higgsa) z chromodynamiką kwantową

Model Standardowy

znakomicie opisuje wyniki wszystkich eksperymentów, ale ... jest **brzy ydki**.

Model Standardowy

Wady:

- ma ok. 20 wolnych parametrów, których wartości trzeba "włożyć z zewnątrz"
- nie wyjaśnia do końca dlaczego cząstki mają masy – mechanizm Higgsa ,,przyklejony plastrem''
 - cząstki Higgsa jeszcze nie odkryto
- nie tłumaczy trzech pokoleń kwarków i leptonów

Nadzieja:

 Symetryczna struktura Modelu Standardowego sugeruje, że ukrywa się za nią jakaś bardziej ogólna, a zarazem prostsza teoria podobnie jak za Tablicą Mendelejewa kryła się struktura atomu, a za multipletami cząstek odkrytych w latach 30-60 — model kwarkowy

Strategia na przyszłość:

- znaleźć cząstkę Higgsa lub wykluczyć jej istnienie
- poszukiwać nowych cząstek
- poszukiwać odchyleń od Modelu Standardowego

Narzędzia badawcze

Nowe cząstki można wytworzyć zderzając rozpędzone do olbrzymich energii elektrony lub protony.

Do rozpędzania służą akceleratory.

Produkty zderzenia są rejestrowane przez detektory.

Niektóre cząstki żyją tak krótko (<10⁻²³s), że o ich istnieniu można się dowiedzieć jedynie badając bardziej stabilne cząstki powstałe w wyniku ich rozpadu.

AKCELERATORY

We współczesnych akceleratorach cząstki naładowane przyspieszane są na zboczu biegnącej fali elektromagnetycznej

podobnie jak deska surfingowa na fali morskiej.

Fala ta jest wytwarzana we wnękach rezonansowych.

Aby te same wnęki wykorzystać wiele razy można przyspieszać cząstki wzdłóż orbity zamkniętej.

Tory cząstek zakrzywiane są wtedy za pomocą magnesów.

Do badań można też wykorzystać promieniowanie kosmiczne docierające do Ziemi.

Akcelerator LHC

Wykres Livingstona 10¹⁸ $(SSC) \times$ 🔊 LHC Akceleratory hadronowe równoważna energia wiązki [eV] (**Colliders**) 10^{15} **TeVATRON** SPPS 1012 SR (□Strong Focus Synchrotrons) ak Focus Synchrotrons) 10⁹ Synchro-cyclotrons) (#Linacs) %Electrostatic Generators) Cyclotrons (ORectifier Generators) 10^{6} 1920 1940 1960 1980 2000 2020 rok

Użycie coraz to nowych technologii umożliwia szybki wzrost możliwosci akceleratorów.

Zastosowanie magnesów nadprzewodzących w istniejącym tunelu LEP (CERN, Genewa) pozwoli zderzać protony z \sqrt{s} =14 TeV.

Obecne i przyszłe akceleratory

symbol	<mark>nazwa</mark> laboratorium, miejsce	cząstki	energia TeV	długość km	start
TeVatron	Fermilab, Chicago	р р [_]	2	6	1987
LEP	Large Electron-Positron Collider, CERN, Genewa	e ⁺ e ⁻	0,1 - 0,2	27	1989
HERA	Hadron-Electron Ring Accelerator, DESY, Hamburg	e [±] p	0,3	6,3	1992
LHC	Large Hadron Collider CERN, Geneva	рр	14	27	2005
NLC	Next Linear Collider DESY, Japonia, USA	e ⁺ e ⁻	0,5 - 1,5	30-50	2010?
MC	Muon Collider, USA	$\mu^+\mu^-$	0,5	1,2	2015?
VLHC	Very LHC, USA	рр	100	100-600	2020?
LEPxLHC	CERN, Genewa	e [–] p	1,3	27	2025?
NNLC	Next NLC	e ⁺ e ⁻	5		2030?
NMC	Next MC	μ+μ_	4	7	2035?

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Detektory

Przykłady technik detekcyjnych:

Cząstka pozostawia ślad w emulsji fotograficznej.

Cząstka przechodząca przez półprzewodnik tworzy pary elektron-dziura. Powoduje to przepływ rejestrowalnego prądu.

Cząstka jonizuje gaz między dwoma elektrodami o wysokim napięciu. Następuje wyładowanie dające mierzalny impuls elektryczny.

Cząstka przechodząca przez niektóre substancje (NaJ) pobudza atomy, które następnie emitują światło (fotony). Światło to jest rejestrowane przez fotoczułe elementy elektroniczne.

Cząstka wysyła też fotony (tzw. promieniowanie Czerenkowa) jeżeli porusza się w ośrodku szybciej niż światło.

Współczesne eksperymenty fizyki cząstek stosują kombinacje wielu elementów działających na różnych zasadach.

Eksperyment CMS

Compact Muon Solenoid - to detektor przeznaczony do badania zderzeń proton-proton w akceleratorze LHC.

Podstawowe założenia projektowe:

- 1. Bardzo dobry <u>system mionowy</u> – precyzja pomiaru, hermetyczność, redundancja
- 2. Najlepszy możliwy kalorymetr elektromagnetyczny – zdolność rozdzielcza, jednorodność, granularność
- 3. Wysokiej jakości <u>detektor centralny</u> – gęstość próbkowania, precyzja pomiaru
- 4. Hermetyczny kalorymetr hadronowy

Budowa detektora CMS

Selekcja przypadków

W ciągu 10 lat pracy LHC zajdzie 10¹⁷ zderzeń pp.

Zaobserwowanie 10 "egzotycznych" przypadków może stanowić epokowe odkrycie "nowej fizyki".

Należy jednak umieć odszukać owe 10 przypadków wśród wszystkich 10¹⁷.

Szukanie igły w stogu siana?

- typowa igła 5 mm³
- typowy stóg siana 50 m³

 $igla : stóg = 1 : 10^{10}$

Poszukiwanie "nowej fizyki" w LHC to szukanie igły w milionie stogów siana.

Poszukiwanie higgsa

Model Standardowy opiera się na założeniu, że istnieje cząstka Higgsa, lżejsza niż ~1 TeV.

Eksperymentalnie wykluczono już M_H<92 GeV.

Jeżeli higgs nie zostanie odkryty przy największej energii LEP (200 GeV), to do przeszukania pozostanie obszar $98 < M_H < 1000$ GeV.

Optymalna strategia poszukiwania higgsa w LHC zależy od jego masy:

 $\begin{array}{ll} 80 < M_{H} < \ 140 \ \text{GeV} & H \rightarrow \gamma\gamma \\ 130 < M_{H} < \ 700 \ \text{GeV} & H \rightarrow ZZ^{(\star)} \rightarrow 4 \ \text{leptony} \\ 500 < M_{H} < 1000 \ \text{GeV} & H \rightarrow ZZ^{(\star)} \rightarrow 2 \ \text{leptony} + 2 \ \text{dzety} \end{array}$

$H \rightarrow \gamma \gamma$ (80 < M_H <140 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptony (130<M_H<500 GeV)

Przypadku z czterema wysokoenergetycznymi leptonami ($e \$ lub μ) nie da się nie zauważyć.

Zwłaszcza pewna identyfikacja mionów ("złoty kanał") pozwala niemal całkowicie wyeliminować tło. *Precyzja:*

σ (M_H~170 GeV) = 1 GeV.

 $H \rightarrow ZZ^{(*)} \rightarrow leptony+dżety$ (130<M_H<500 GeV)

W reakcjach:

 $H \to Z Z^{(\star)} \to \ell^+ \ell^- \ j \ j$

$$H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \nu \nu$$

$$H \to W^+ W^- \to \ell^\pm \nu \ j j$$

kalorymetr hadronowy mierzy energię dżetów (j) i brakującą energię poprzeczną E_t^{miss} , charakterystyczną dla neutrin (v).

 $M_{Higgs} = 800 \text{ GeV}$

Łamigłówka

18 nałożonych zderzeń pp,

widzianych przez wewnętrzną część krzemowego detektora mikropaskowego.

Wśród nich rozpad cząstki Higgsa na 4 miony.

Znajdź 4 proste ślady.

Rozwiązanie łamigłówki

Zrekonstruowane ślady o p_t > 2 GeV.

Wśród nich dobrze widoczne 4 miony z rozpadu Higgsa.

Rozwiązanie możliwe jeśli zajętość detektora ~1%

- \rightarrow powierzchnia mikropaska ~1mm²
- \rightarrow >10⁷ kanałów odczytu

Rozwój technologii

Moc obliczeniowa procesorów wzrasta 10 razy co 5 lat Pojemność pamięci wzrasta 4 razy co 2 lata Cała moc obliczeniowa CERNu w 1980 roku była mniejsza niż jednego współczesnego komputera osobistego.

Harmonogram prac

Skala przedsięwzięcia wymaga aby projekt techniczny był gotowy na 8 lat przed uruchomieniem eksperymentu!

Aby urządzenie nie było przestarzałe już w momencie oddania do użytku, w czasie projektowania należy przewidzieć i uwzględnić możliwy rozwój technologii.

Cały system wyzwalania i zbierania danych CMS zawiera ponad 10 000 modułów elektronicznych.

Jeżeli moduł psułby się średnio raz na 3 lata, codziennie należałoby wymieniać 10 modułów.

Podsumowanie

Próba odkrycia "Nowej Fizyki" wymaga sięgnięcia do bardzo <mark>wysokich energii</mark> i poszukiwania niezwykle <mark>rzadkich zjawi</mark> s	14 TeV sk σ∼fb
Połączenie tych dwóch wymagań stanov dla najnowocześniejszych technologii informatycznych i telekomunikacyjnych:	vi wyzwanie
<u>wysoka energia:</u>	
 duża liczba produkowanych cząstek 	~100/przypadek
 precyzyjny pomiar w szerokim zakresie dynamicznym 	~100µ/10m
<u>poszukiwanie rzadkich zjawisk:</u>	
 olbrzymia częstość oddziaływań 	~1 GHz
 nakładanie się oddziaływań 	10-20
 mały stosunek sygnału do tła 	1:10 ¹¹ - 1:10 ¹⁶
<u>wynikające z powyższego wymagania te</u>	<u>chnologiczne:</u>
 sterowanie przepływem olbrzymiej ilo 	ości danych 500 Gbits/s

• analiza przypadków w czasie rzeczywistym

	selekcja 1:10 ⁷
 gigantyczna moc obliczeniowa 	5 TIPS
 super-pojemna pamięć masowa 	1 PB/rok

Spełnienie tych wymagań przez detektory CMS i ATLAS pozwala żywić nadzieję na odkrycie "Czegoś Nowego" w LHC

Historia jednego eksperymentu i jednej rodziny

Eksperyment "Compact Muon Solenoid" CMS na akceleretorze LHC (CERN, Genewa). Ok. 1800 fizyków i inżynierów z kilkudziesieciu krajów. Rodzina Wrochnów: Mama, Tato, Ania, Michał, Marcin i Łukasz 1985 Rodzi się Ania 1987 Rodzi się Michał **1990** Rozpoczęcie prac projektowych. Rodzi się Marcin. **1991** Bronię pracę doktorską. Podejmuję pracę w CMS. **1992** Projekt koncepcyjny. Rodzi się Łukasz. Ania do szkoły. 1994 Ogólny projekt techniczny. Michał do szkoły. 1997 Szczegółowe projekty techniczne. Marcin do szkoły. 1999 Rozpoczęcie produkcji elementów. Łukasz do szkoły. 2001 Początek montażu. Ania w liceum, Michał w gimnazjum. 2005 Uruchomienie. Ania na studia, Michał w liceum, Marcin i Łukasz w gimnazjum. 2005-2015? Zbieranie danych 2005-2020? Analiza wyników 2008 Ania kończy studia **2010** Michał kończy studia 2013 Marcin kończy studia 2015 Łukasz kończy studia Eksperyment zakrojony na dwa pokolenia. Wszyscy czworo mogą zrobić doktoraty w CMS.

Słuchacze dzisiejszego wykładu też!