21.05.2002

Detektory uniwersalne

- przegląd technik detekcyjnych
- pomiar energii i pędu
- identyfikacja cząstek
- uniwersalne detektory wielowarstwowe
- systemy wyzwalania i akwizycji danych
- komputerowa symulacja i analiza danych

Grzegorz Wrochna Instytut Problemów Jądrowych im. A.Sołtana wrochna@fuw.edu.pl http://hep.fuw.edu.pl/~wrochna/lectures

Detekcja cząstek

Pod pojęciem detekcji rozumiemy:

- zaobserwowanie cząstki
- rejestracja obserwacji
- pomiar prędkości, pędu, energii, itp.
- identyfikacja

Podstawowe zjawiska

Cząstka naładowana przechodząc przez materię manifestuje swoją obecność poprzez

- jonizację ośrodka
- emisję fotonów

<u>Jonizacja</u>

polega na wybijaniu elektronów z atomów ośrodka.

W półprzewodnikach przechodząca cząstka może tworzyć pary elektron-dziura.

<u>Emisja fotonów</u>

- Scyntylacja cząstka przechodząca przez niektóre substancje (Nal) pobudza atomy, które następnie emitują światło (fotony).
- Promieniowanie Czerenkowa cząstka poruszająca się w ośrodku szybciej niż światło wysyła fotony w stożku przypominającym falę uderzeniową naddźwiękowego samolotu.
- Promieniowanie przejścia emitowane przez cząstkę na granicy dwóch ośrodków
- Promieniowanie hamowania emitowane przez cząstkę zwalniającą w ośrodku.

Detektory

Przykłady technik detekcyjnych:

Cząstka jonizując ośrodek pozostawia ślad w emulsji fotograficznej, przegrzanej cieczy (komora Wilsona), przechłodzonym gazie (komora pęcherzykowa).

Cząstka przechodząca przez półprzewodnik tworzy pary elektron-dziura. Powoduje to przepływ rejestrowalnego prądu — detektory krzemowe mozaikowe i mikropaskowe.

Cząstka jonizuje gaz między dwoma elektrodami o wysokim napięciu. Następuje wyładowanie dające mierzalny impuls elektryczny — komory wielodrutowe, dryfowe, z segmentowną katodą, RPC.

Cząstka przechodząca przez niektóre substancje (Nal) pobudza atomy, które następnie emitują światło (fotony) — liczniki scyntylacyjne.

Światło to jest rejestrowane przez fotoczułe elementy elektroniczne — fotopowielacze, fotodiody.

Cząstka wysyła też fotony (tzw. promieniowanie Czerenkowa) jeżeli porusza się w ośrodku szybciej niż światło — liczniki Czerenkowa.

Współczesne eksperymenty fizyki cząstek stosują kombinacje wielu elementów działających na różnych zasadach.

Detektory uniwersalne

- pomiar energii
 - kalorymetr
- pomiar pędu
 - zakrzywienie toru w polu magnetycznym
- identyfikacja cząstek
 - różne odziaływanie z materią

Digityzacja

Przetwarzanie do postaci cyfrowej

Dyskryminator

- numer kanału \rightarrow położenie (detektory śladowe)
 - detektory krzemowe mikropaskowe i mozaikowe
 - komory wielodrutowe
 - Resistive Plate Chambers RPC

Przetwornik analogowo-cyfrowy ADC

- ładunek, prąd, napięcie \rightarrow energia (kalorymetry)
 - komory proporcjonalne
 - fotopowielacze, fotodiody
- stosunek ładunków → położenie (detektory śladowe) – komory z segmentowana katoda CSC

Przetwornik czasowo cyfrowy TDC

- czas dryfu → położenie (detektory śladowe) – komory dryfowe, komory z projekcją czasu TPC
- czas przelotu → prędkość – liczniki scyntylacyjne, RPC

Cząstki długożyciowe

cząstka		czas życia τ	$\mathbf{c}\cdot \mathbf{\tau}$	
foton	γ	8	8	
elektron	e [–]	8	8	
neutrino	ν	8	∞	
proton	p ⁺	>1.6 ·10 ³³ lat	8	
neutron	n	887 s	2.7 ·10 ⁸ km	
mion	μ	2.2 ⋅10 ^{–6} s	659 m	
pion	π^+	2.6 ⋅10 ^{–8} s	7.8 m	
kaon	K ⁺	1.2 ⋅10 ^{–8} s	3.7 m	
kaon	κ ⁰ L	5.2 ⋅10 ^{–8} s	15.5 m	
kaon	κ ⁰ s	0.9 ⋅10 ^{–10} s	2.7 cm	
$\Lambda^0 \Sigma^+ \Xi^{0-} \Omega^- \dots$		~ 10 ^{–10} s	~ 3 cm	
$\mathbf{D}^{0+} \mathbf{B}^{0+} \Lambda_{\mathbf{c}}^{\mathbf{+}} \Lambda_{\mathbf{b}}^{0}$		~ 10 ⁻¹² s	~ 300 μm	
pion	π ⁰	8.4 ⋅10 ⁻¹⁷ s	25 nm	
η,ψ, rezonanse		<10 ⁻¹⁹ s	_	

W praktyce bezpośredniej detekcji podlegają jedynie

 γ , e[±], p[±], n, μ^{\pm} , π^{\pm} , K[±], K⁰_L.

Inne cząstki badamy obserwując produkty ich rozpadu.

Cząstki długożyciowe

Pomiar prędkości

Możliwy tylko dla cząstek o niezbyt dużej energii poruszających się z prędkością istotnie mniejszą od *c*.

- czas przelotu między dwoma licznikami <u>∆t=d/v</u>
- kąt stożka promieniowania Czerenkowa $\sin\theta = v_c/v$

<u>Pomiar pędu</u>

Promień krzywizny toru w polu magnetycznym

R = p / 0.3 B [R]=m, [p]=GeV, [B]=T

Tor może być

- zaobserwowany bezpośrednio w emulsji fotograficznej, komorze mgłowej lub pęcherzykowej.
- wyznaczony przez szereg punktów zmierzonych
 - detektorem mikropaskowym lub mozaikowym
 - komorą drutową

<u>Pomiar energii</u>

Elektron i foton "grzęzną" w materii wywołując krótką kaskadę elektromagnetyczną.

Hadrony (p, n, π , K) wywołują kaskadę hadronową.

Liczba cząstek w kaskadzie jest proporcjonalna do energii cząstki pierwotnej.

Do jej zmierzenia może służyć

- scyntylator z fotopowielaczem lub fotodiodą
- komora proporcjonalna

Zespół takich detektorów mierzący energię nazywamy kalorymetrem.

Pomiar toru

Detektory półprzewodnikowe (mikropaskowe, mozaikowe)

- bardzo wysoka precyzja: ~10-20μm
- niezbyt duże powierzchnie: ~1-10m²

Detektory gazowe (komory drutowe)

- bardzo duże powierzchnie: ~100-1000m²
- umiarkowana precyzja: ~100-200μm

Nowe trendy

Detektory mikro-gazowe (MSGC, MGC, GEM, Micromegas)

- dość duże powierzchnie: ~10-100m²
- dobra precyzja: ~30-60μm

Detektory uniwersalne

Ogry są jak cebule. Cebule mają warstwy. Ogry mają warstwy. Detektory mają warstwy!

Identyfikacja cząstek

Cząstki długożyciowe identyfikujemy obserwując jak odziaływują z materią:

- cząstka naładowana ślad
- elektron, foton kaskada elektromagnetyczna
- hadron (p, n, π, K) kaskada hadronowa

Detektor uniwersalny składa się więc zwykle z 4 części:

- wewnętrzny detektor śladowy ("traker")
- kalorymetr elektromagnetyczny
- kalorymetr hadronowy
- zewnetrzny detektor śladowy (det. mionowy)

	γ	e	ν	p ,π, K	n	μ
traker	-	+	I	+	_	+
kalorymetr elektromag.	+	+		—	_	_
kalorymetr hadronowy	_		_	+	+	_
detektor mionowy	_	_	_	_	_	+

Obecność neutrina można rozpoznać jedynie po "brakującej energii" — pozornym złamaniu zasady zachowania.

Proton, kaon i pion można odróżnić wyznaczając masę cząstki, zmierzywszy uprzednio jej energię i pęd:

$$m^2 = E^2/c^4 - p^2/c^2$$

Identyfikacja cząstek

Compact Muon Solenoid

Cząstki krótkożyciowe

Cząstki krótkożyciowe badamy obserwując produkty ich rozpadu. Jeżeli znamy energie i pędy cząstek wtórnych to z zasad zachowania możemy wyliczyć energię, pęd i masę cząstki pierwotnej.

Jest to standardowa metoda odkrywania nowych cząstek:

1. Zastanawiamy się na jakie cząstki mogłaby się ona rozpadać.

2. Dla każdego przypadku, w którym takie cząstki pojawiły się wyliczamy masę hipotetycznej cząstki pierwotnej i zaznaczamy ją na wykresie.

Jeżeli rzeczywiście była ona wytworzona w części obserwowanych przypadków, to na tle przypadkowych kombinacji dających rozmaite masy pojawi się "pik" w miejscu masy poszukiwanej cząstki.

Rekonstrukcja zdarzenia

Rekonstrukcja zdarzenia

$H \rightarrow \gamma \gamma$ (80 < M_H <140 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptony (130<M_H<500 GeV)

Przypadku z czterema wysokoenergetycznymi leptonami ($e \$ lub μ) nie da się nie zauważyć.

Zwłaszcza pewna identyfikacja mionów ("złoty kanał") pozwala niemal całkowicie wyeliminować tło. *Precyzja:*

σ (M_H~170 GeV) = 1 GeV.

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Selekcja przypadków

W ciągu 10 lat pracy LHC zajdzie 10¹⁷ zderzeń pp.

Zaobserwowanie 10 "egzotycznych" przypadków może stanowić epokowe odkrycie "nowej fizyki".

Należy jednak umieć odszukać owe 10 przypadków wśród wszystkich 10¹⁷.

Szukanie igły w stogu siana?

- typowa igła 5 mm³
- typowy stóg siana 50 m³

 $igla : stóg = 1 : 10^{10}$

Poszukiwanie "nowej fizyki" w LHC to szukanie igły w milionie stogów siana.

Łamigłówka

18 nałożonych zderzeń pp,

widzianych przez wewnętrzną część krzemowego detektora mikropaskowego.

Wśród nich rozpad cząstki Higgsa na 4 miony.

Znajdź 4 proste ślady.

Rozwiązanie łamigłówki

Zrekonstruowane ślady o p_t > 2 GeV.

Wśród nich dobrze widoczne 4 miony z rozpadu Higgsa.

Rozwiązanie możliwe jeśli zajętość detektora ~1%

- \rightarrow powierzchnia mikropaska ~1mm²
- \rightarrow >10⁷ kanałów odczytu

CMS a inne eksperymenty

detektor	l. kanałów	zajętość	przypadek
mozaikowy	80 000 000	0.01 %	100 kB
mikropaskowy	16 000 000	3 %	700 kB
wczesnych kaskad	512 000	10 %	50 kB
kalorymetry	125 000	5 %	50 kB
mionowy	1 000 000	0.1 %	10 kB
całkowita wielkoś	1 MB		

Strumień danych kontrolnych CMS (temperatura, napięcie itp.) jest porównywalny ze strumieniem wszystkich danych jednego ze współczesnych eksperymentów LEP (100 kB/s)

Zapis danych w CMS

Całkowity strumień danych:

40 MHz przypadków po 1 MB =

40 TB/s

(1 TetaByte = 1000 GB)

 \Rightarrow niemożliwe do zapisania na żadnym nośniku!

⇒ konieczność selekcji przypadków w czasie rzeczywistym (on-line)

System wyzwalania (tryger)

Nowoczesne systemy pamięci masowej pozwalają zapisywać ~100 MB/s.

Spośród ~10⁹ przypadków zaobserwowanych w ciągu każdej sekundy jedynie 100 może być zapisanych.

Wyboru dokonuje system wyzwalania zwany trygerem.

TRYGER jest to dwuwartościowa funkcja

- zarejestrowanych danych
- stanu detektora
- badanej fizyki

Ponieważ nie wszystkie dane są natychmiast dostępne a funkcja jest skomplikowana, T(.) jest obliczane w kolejnych przybliżeniach zwanych

stopniami trygera

Do odrzucenia przypadku wystarczy ograniczona dokładność, do następnego stopnia przechodzą więc tylko przypadki z decyzją *"zapisać"*.

"Klasyczny" układ stopni trygera

- l°
- zgrubne dane z części detektorów (często dedykowanych)
- rozpoznanie interesujących obiektów (μ , e, γ , dżet, E_T^{miss})

ll°

- dokładniejsze dane z części detektorów
- pomiar interesujących obiektów

III°

- pełne dane z wszystkich detektorów (dostępne, ale niekoniecznie użyte)
- (częściowa) rekonstrukcja przypadku

- "hardware"
- specjalnie projektowane procesory
- przetwarzanie synchroniczne
- t ~ µs
- "firmware"
- procesory niskiego poziomu (Digital Signal Processor - DSP)
- t ~ ms
- "software"
- komputery
- t ~ s

W LHC już na l° zgrubny pomiar (p_T, E_T)

W CMS już II° to "software" na komputerach

Synchronizacja

Zderzenia pp zachodzą co 25 ns = 7 m świetlnych.

- Nowe zderzenie zachodzi, gdy cząstki z poprzedniego jeszcze nie opuściły detektora.
- Odpowiedź detektorów:
 1 ns (krzemowy) do 400 ns (komory dryfowe)
- Droga od detektora do bufora (pamięci): 0 2 μs.

Aż do l° trygera układ musi pracować <u>synchronicznie</u> (inaczej niż w telekomunikacji i sieciach komputerowych)

- dane z różnych części detektora muszą dotrzeć do procesora trygera w tym samym czasie
- odpowiedź trygera musi napotkać we wszystkich buforach właściwy przypadek.

Przetwarzanie potokowe

Tryger musi zanalizować dane z każdego zderzenia

- co 25ns musi zapaść decyzja czy je zapisać
- Jej wypracowanie wymaga jednak dłuższego czasu.

Rozwiązanie problemu:

przetwarzanie potokowe, czyli "taśma produkcyjna":

- algorytm podzielony jest na kroki wykonywalne w 25ns;
- procesor stanowi łańcuch elementów, z których każdy wykonuje jeden krok algorytmu w 25ns i przekazuje wynik następnemu;
- w ten sposób przetwarzane dane płyną przez procesor ~3μs, a wyniki pojawiają się na jego wyjściu co 25ns;
- pełne dane czekają na decyzję trygera, płynąc synchronicznie w pamięci potokowej.

Tryger I-stopnia @ LHC

<u>Cykl pracy</u>

co 25 ns następuje

- pobranie próbki danych z detektora (~1ms)
- analiza przypadku (~1ms)
- wysłanie decyzji do detektora (~1ms)

<u>Tryger mionowy</u>

- rozpoznanie śladu (ułożenie punktów w tor)
- przypisanie do danego zdarzenia (pomiar czasu)
- pomiar pędu
- porównanie z progiem

Tryger kalorymetryczny

- zlokalizowanie dużego depozytu energii
- identyfikacja obiektu (e/g, dżet hadronowy)
- pomiar energii
- porównanie z progiem

Drift Tubes in Barrel

- MB1,2,3 = 8 φ-layers + 4 θ-layers
- MB4 = 8 **\ophi-layers**
- 250 chambers
- 200 000 channels

- wire pitch = 4 cm
- max. drift time = 400 ns

Muon Tracks in CMS

 $p_t = 3.5, 4.0, 4.5, 6.0 \text{ GeV}$

Drift Tube Local Trigger

Barrel Track Finder

RPC Trigger Algorithm

Pattern of hit strips is compared to predefined patterns corresponding to various p_T

PAttern Comparator (PAC) ASIC

4752 ASICs in Counting Room

RPC Muon Trigger System

RPC Trigger Readout - Prototype

2 input (link) channels (incl. derandomizer memory); 1 master (event builder incl. buffer memory); TTC interface; VME and PCI interface; tested with Punit (Bologna), input speed 40 MHz (no dead time), master speed 20 MHz; synchronous beam tests with FEB and link prototype in action; C++ (Borland)test readout environment for lab and beam tests.

CMS calorimeter level-1. Isolated electron

Trigger granularity	(Dh * Df)	No.of trigger towers
ECAL : $ h \le 2.1$ h > 2.1	0.087 * 0.087 0.174 * 0.087	56 * 72 = 4032 as ECAL
HCAL:	as ECAL	162

Receiver Card Prototype

160 MHz Prototype Card Under Test:

- VME Interface working
- Adder ASIC's functioning
- Detailed timing under study

Wyższe stopnie trygera CMS

ll°

wczytanie danych mionowych i kalorymetrycznych — 100 kHz sprawdzenie obiektów l° z pełną rozdzielczością

III°

wczytanie danych z det. wewnętrznego wokół obiektów II° — 10 kHz dopasowanie torów

IV°

wczytanie pozostałych danych — 1 kHz pełna rekonstrukcja przypadku zapis na nośnik trwały — 100 Hz

Przepływ danych w CMS

1 TB = 1 terabajt = 10^{12} bajtów 1 PB = 1 petabajt = 10^{15} bajtów 1 GIPS = 10⁹ instrukcji/s 1 TIPS = 10¹² instrukcji/s

Dystrybutor

Dystrubutor

to "górka rozrządowa" systemu zbierania danych.

Jego zadaniem jest zebranie danych dotyczących danego przypadku ze wszystkich części detektora i przesłanie ich do określonego procesora.

moduły odczytu różnych części detektora

farma procesorów

przepustowość:

500 Gigabit/s

jest równoważna ilości danych przesyłanych przez całą dzisiejszą telekomunikację europejską.

Ewolucja systemów zbierania danych

Ilość danych przepływających przez system odczytu CMS w ciągu 5 minut pracy LHC jest porównywalna z całością danych przesłanych przez wszystkie sieci w CERNie w ciągu całego 1995 roku.

Harmonogram prac

Skala przedsięwzięcia wymaga aby projekt techniczny był gotowy na 8 lat przed uruchomieniem eksperymentu!

Aby urządzenie nie było przestarzałe już w momencie oddania do użytku, w czasie projektowania należy przewidzieć i uwzględnić możliwy rozwój technologii.

Cały system wyzwalania i zbierania danych CMS zawiera ponad 10 000 modułów elektronicznych.

Jeżeli moduł psułby się średnio raz na 3 lata, codziennie należałoby wymieniać 10 modułów.

Rozwój technologii

Moc obliczeniowa procesorów wzrasta 10 razy co 5 lat Pojemność pamięci wzrasta 4 razy co 2 lata Cała moc obliczeniowa CERNu w 1980 roku była mniejsza niż jednego współczesnego komputera osobistego.

Symulacja

- 1 przypadek ~20 s (PIII 600 MHz)
- 1 miesiąc = 43200 minut \approx 130 000 przypadków
- \times 100 PC \approx 10⁷ przypadków
- / 0.5 GHz = 0.02 s LHC @ 10^{34} cm⁻²s⁻¹

konieczność oddzielnej symulacji szczególnych sygnatur

Symulacja przypadków mionowych

	р _Т		liczba przypadków		σ	czas
próbka	[GeV]	μ	generacja	simulacja	[mb]	LHC
min.bias		1	2 500 000	365 000	55	0.005 s
min.bias	> 5	1	1 200 000	200 000	26	0.005 s
min.bias	> 10	1	1 200 000	200 000	2.7	0.04 s
min.bias	> 20	1	1 100 000	42 000	0.26	0.4 s
min.bias	> 10	2	2 500 000	66 000	0.033	7.3 s
W + dżety	1	1	580 000	49 000	1.9 [.] 10 ⁻⁴	5 min
Z + dżety	-	1	440 000	27 500	5.5 [.] 10 ⁻⁵	13 min
Z/γ + dżety	-	1	900 000	49 000	1.0 [.] 10 ⁻³	1.5 min
WW, WZ, ZZ	-	2	1 800 000	10 000	6.8 [.] 10 ⁻⁶	19 h
tt	—	2	100 000	9 500	6.2 [.] 10 ⁻⁷	4.5 h
$H \rightarrow WW \rightarrow 2 \mu \ 2 \nu$	—	2	25 000	25 000	3-11 [.] 10 ⁻¹¹	18.5 dni
$H \rightarrow ZZ \rightarrow 4\mu$	—	2	22 000	22 000	0.8-2.2 [.] 10 ⁻¹²	20 lat

Prototype 4: Interactive 3D Detector and Event Visualisation with ORCA

User Analysis Environment Lucas Taylor, Northeastern University

1st Internal Review of CMS Software and Computing 27-28 October 1999, CERN

LHC Computing: *Different* from Previous Experiment Generations

- Geographical dispersion: of people and resources
- Complexity: the detector and the LHC environment
- Scale: Petabytes per year of data

Major challenges associated with

- Coordinated Use of Distributed computing resources
- Remote software development and physics analysis
 - Communication and collaboration at a distance R&D: New Forms of Distributed Systems

Distributed Analysis and Regional Centres in CMS: Harvey B Newman, California Institute of Technology

1st Internal Review of CMS Software and Computing 27-28 October 1999, CERN

Emerging Models of Networked Computing from *The Grid*

Distributed Computing

 // synchronous processing

 High-Throughput Computing

 // asynchronous processing

 On-Demand Computing

 // dynamic resources

 Data-Intensive Computing

 // databases

 Collaborative Computing
 // scientists

Ian Foster and Carl Kesselman, editors, "The Grid: Blueprint for a New Computing Infrastructure," Morgan Kaufmann, 1999, http://www.mkp.com/grids

Regional Centers Concept: A Data Grid Hierarchy

Distributed Analysis and Regional Centres in CMS: Harvey B Newman, California Institute of Technology

LHC Grid Hierarchy Example

- ◆ Tier0: CERN
- Tier1: National "Regional" Center
- Tier2: Regional Center
- Tier3: Institute
 Workgroup Server
- Tier4: Individual Desktop

Total 5 Levels

Example: 9 Participants, CERN(2), Caltech, FNAL(2), Bologna (IT), Roma (IT), Milan (IT), Rutherford(UK)

