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Abstract

It has been observed that the ete™ multiplicity distributions exhibit the
following properties: the dispersions are linear functions of the mean and
the distributions obey the KNO-G scaling with the scaling function of the
lognormal shape.

In this paper the scale invariant branching is assumed as a mechanism
within which all these properties could be derived. It is shown that the lognor-
mal shape of the scaling function can be obtained within proposed mechanism
by using the generalization of the Central Limit Theorem. The dependence of
average multiplicity on energy is also derived within the postulated framework.

It is also shown that many other phenomena encountered in nature have
the similar statistical properties.



1 Introduction

" Recent results on the e*e™ collisions — especially data published by the TASSO collab-
oration [1] — allow the study of statistical properties of multiplicity distributions with
improved precision. It turns out that, in spite of the complicated character of the mul-
tiparticle production process, these properties are very simple and have already been
encountered in many other phenomena in nature.

In this paper we show that assuming the scale invariant branching as a multiparticle
production mechanism one can obtain the scaling of the multiplicity distributions with
the scaling function of the lognormal shape.

Section 2 of this paper gives a brief summary of the scaling properties found in the
ete™ multiplicity distributions [2, 3]. The e*e™ multiplicity distributions obey the KNO-
G scaling [4] with a scaling function of the lognormal shape [3].

In Sect. 3 we describe details of the proposed multiparticle production mechanism.
The scale invariant branching is postulated to be responsible for the scaling properties
seen in the data. It is also shown that for such process the Central Limit Theorem implies
the lognormal shape of the scaling function of the final multiplicity distributions.

The mean multiplicity dependence on the energy is derived within the proposed frame-
work and discussed in Sect. 4,

Section 5 presents some examples of similar scaling properties observed in phenomena
not connected with elementary particle physics.

The mathematical formalism and derivation of some general formulae concerning the
presented approach are collected in the two appendices. The first one reminds of the
ways the lognormal distribution can be derived, and the second one gives the derivation
of the linear dependence of dispersions on the mean multiplicity which is equivalent to
the derivation of the scaling. The reasoning given in these two appendixes follows that of

the works by Kapteyn {5}, Wicksell [6] and Kolmogorov [7].

2  Multiplicity distributions in eTe™ collisions

We start this section by listing the four fundamental properties of multiplicity distribu-
tions in eTe™ collisions which have been described in our previous paper on the subject

[3]:

(1) The multiplicity distribution P, has a continuous density function f(#) (we denote
the variable by 7 since it has the meaning of ”continuous multiplicity”):

n4-1

P, = / F(7)d7 . (2.1)

(2) The density f(#) has a lognormal distribution (i.e. In# is distributed normally):

(i) = \/‘%a : ﬁic exp (_[ln(ﬁ-;;)z_p]z) |

(2.2)

(3) The dispersions of the order k are linear functions of the mean multiplicity:



Dy = Ag({n) +0.5) , Aj = const(s) , (2.3)
where

(=]

Dy = [Z (n — (n))* Pn] Uk : (2.4)

nw—=0

(4) The density function f(7) obeys the scaling:
1 i
n) = -——t — | 2.5
1= g+ (37 &

where 1(2) is a function independent of energy.

It should be noted that properties (3) and (4) are equivalent to each other [4, 8]. The
scaling function 4(z) can be obtained from the density function by substituting:

7

@) =z, c=d{n), p =g +In(n) (2.6)

into the formula (2.2). We then obtain the scaling function of the lognormal shape [3]:

#0= ity g e ()

where IV is given by the first normalization condition 1:

(2.7)

T 2
1= j P(z)dz = N= . 2.8
J (=) erfc((lnc’——p’)/\/io') 28)
The symbol "erfc” stands for the complementary error function [9]:
erfe(R) = 2 cx)ee_tzd.'t (2.9)
7= J . .

The shape of the lognormal scaling function with parameters fitted to the ete™ data
[3] is presented in Fig. 1.

Needless to say, the combined properties (1) and (4) are equivalent to the KNO-G
scaling {4, 8] and can be expressed in the following way [8):

{nt+1)/ {7} - n T 00
P, = f Wde, s=rr, (@)= / fi(z)dz . (2.10)
n/(7) 0

Let us introduce the primitive function of (z) denoted by ¢(z). The definition of
¢(z) and its explicit form calculated for the function %(z) (2.7) is 2:

'We assume that ¢/ > 0. If ¢! < 0 then N =1,
?If ¢’ < 0 then z must be greater than ¢’ and ¢(z) = —0.5 - erfe ([In(z + ¢’} — '] / V20).



e erfc ([In(z + &) —p'] / V2o

#z) = —f¢(z)dz = — ( ) . (2.11)
erfc ((ln ¢ —p) /2 a')

We advocate the use of the function ¢(z) instead of 1#(z) as the scaling function [8].

It is easy to see that, when the scaling function ¢(z) is used, the formula for P, assumes
a simple non-integral form:

ool -+(3)

Parameters p’, ¢’ and o are constrained by the second normalization condition:

1={z) = fz'z,b(z)dz = - fgb(z)dz , (2.13)

but it is difficult to derive the analytic formula relating them, so they are treated as
independent free parameters when the scaling function is fitted.

It has been found that the scaling function of the lognormal shape (2.7) describes
with very good precision the multiplicity distributions in the eTe~ collisions {3]. Figure 2
presents a graphical test of the KNO-G scaling (8, 3] for 25 experimental ete™ multiplicity
distributions [1]. We recall that the experimental data, plotted as the quantity S, versus

z, should follow one single curve if the data obey the KNO-G scaling [3, 4, 8] This can
be seen from the following equality:

o0

S, = gj Po= [ 9(e)iz= ¢ (%) . (2.14)

" n/{#i)

As seen from Fig. 2, the data obey the KNO-G scaling very well.
The following parameters 3 have been obtained as a result of a fit to the TASSO data

[3]:
p' = 0.581 = 0.001 , ¢ =0.811+0.002 , o =0.155£0.001.  (2.15)

A convenient graphical way to present the lognormal distribution is the so—called
probit diagram” [10]. Let us denote the distribution function of the normal density by

F(z):

Flz) = % [ exs(-aia . (2.16)

When variable n has a lognormal distribution, we can write the distribution function
of n in the form:

;R- —F (1—————“(”352 —# ) . (2.17)

Let F~*(z) denote the inverse function of F(x):

3In our previous publication [3] we have used a slightly different parametrization with parameters a
and b, which however could be easily converted to g’ and ¢': p' = In{1/e) and ¢’ = b/a.
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(F(E)=a. @y

Hence

- (ZP) n}? £ (2.19)

Thus when we plot F~? (E P) against In(n+¢) for lognormal distribution, we obtain

i=0
a straight line. Using the scaled variable z = n/{n}, instead of n, we can check the scaling:

(ZP) n(z :L/fi . (2.20)

If the parameters p', ¢’ and o are constants, all the data should follow a single curve.

Figure 3 presents the same 25 experimental ete™ multiplicity distributions [1] ex-
pressed as a probit diagram.

We recall that the experimental data should follow one single straight line if they are
distributed according to the lognormal scaling function. As seen from Fig. 3 this is exactly
the case.

An equivalent way to check the scaling properties of the multiplicity distribution is by
plotting the dependence of the k-order dispersions on the mean multiplicity [8, 3]. Such
a plot is presented in Fig. 4. The dispersions are indeed linear functions of the mean
multiplicity, which again confirms the fact that the data obey the KNO-G scaling.

3 Genesis of the lognormal distribution observed in
the eTe™ collisions

In the present section we describe a possible mechanism of the multiparticle production,
which in a natural way explains the scaling properties and the lognormal shape of the
scaling function established for the data,

In Appendix A we summarize the derivation of the lognormal distribution as a con-
sequence of the Central Limit Theorem. In the following it will be shown how to apply
this mathematical concept to the ete™ collisions.

Let us consider, after Polyakov {11}, that multiparticle production is a scale invariant
branching process. The process starts with two primary quarks coming from a reaction
e*e” ~ ¢§. The kinetic energy of colliding electrons, /3, is converted into the potential
energy of a string between the quarks. The string can break forming a second pair of
quarks. The sum of the potential energy of both pairs is smaller than the energy of the
primary string because a fraction of the latter converted into the kinetic energy of the two
pairs. Each of the strings can break again and the process is continued until the potential
energy of the strings is of the order of the pion mass.

The number of particles created in the i-th generation is proportional to the number

of particles in the (i — 1)-th generation. Thus, denoting the number of particles in the
i-th generation by #; we have:

i = N1 + € Ryq (3.1)



where €; 1s a random variable.

The potential energy per particle, E;, can change for two reasons. Firstly, the energy
should be divided into a larger number of particles (decrement by the factor 1 + ¢; ).
Secondly, a fraction §; of the potential energy is converted into kinetic energy.

E,=F_- (1 - 6,)/(1 + E,') . (3.2)
Thus after n steps:

R=ng-(1+e1) - (14+¢a), (3.3)
1-—468 1-—46,

E=F,. . 3.4

“14e 1+en (3.4)

Let us introduce new variables:
7 E
n=[[0+e)= =, E=[]A-&)=n-—-.
i o i Fqo
Variables  and £ are independent because of the independence of ¢; and §;. Both are

distributed lognormally as it is shown in Appendix A. The common distribution of 7 and
€ can be written in the form (see Appendix B):

1l(nn—p)’ | (=Iné&—pe"|)
[ )

T cexp ¢ —
2rwonoe mé P { 2 o2 o

After substitution of 1 and ¢ by % and E one obtains:

(3.5)

f(m,€) =

(3.6)

n K 1
—, =) = > . 3.7
f (no, Eo) 271'0'10’2 %Eﬁu\/l — p2 P ( )
; 2 ; 2
L fUafp) , (nfm) (=) ()
2(1 — p?) ol P o102 N o3 ,

where parameters 1, {13, 01,02 and p can be expressed by p, ¢, o, and o

P1 =y fin = pgt g (3.8)

o1=0y, 03=4/0f+ 02
P:Jn/\/552+072,

The parameters py and g, have interpretation of the mean logarithms of # and E re-
spectively, and oy and o, are dispersions of In7 and In E, and p is a correlation coefficient.
Thus, f(;’f;, E%) is a bivariate lognormal distribution.

If we fix the primary energy Ey at /s and the final energy E at the pion mass m.,,
then from rel.(B.2) we obtain a formula for conditional probability density:

1
. 3.9
2roy /1 —pii (3.9)

exp {—m [(mﬁ, — ) — p% (m-?—f ~ M)r} .

This is again a lognormal distribution with parameters:

f(Rlvs) =
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o s
1= fo1 +p— (ln Vs _ [.Lg) , o=l (1-p%). (3.10)
()] m

&

Now we can use formulae (B.4-B.6) from Appendix B to derive the scaling:

(7*) = exp [k n(/s) + -]2; k 0'2] . (3.11)

For the dispersion of the second order we have:

D=A(7) , where A= lexp(c?)—1 (3.12)

and similarly for the higher orders.
For the experimentally measured charged multiplicity, formula (3.12) assumes the form
[8]:

Dy~ A ((nch) -+ 1) . (313)

Formulae (B.4-B.6) are still valid, i.e. the dispersions are linear functions of the mean,
which is equivalent to the scaling. Needless to say, the linear dependence of dispersion on
the mean multiplicity was firstly observed for the pp data [12].

It is obvious, that the obtained scaling function cannot be directly applyed to the pp
collisions, because protons are not point-like objects. We have checked that indeed the
shape of the scaling function for the pp multiplicity distribution is slightly different than

the lognormal one. The results of investigation of this problem will be published elsewhere
[13].

In conclusion, it has thus been shown that the lognormal multiplicity distribution, the
KNO-G scaling and the linear relation between dispersions and the mean are consequences
of the Central Limit Theorem within the postulated framework.

4 Average multiplicity -

Formulae (B.4) and (3.10) can be used to evaluate the dependence of the average multi-
plicity on the energy. If we substitute (3.10) into (3.11) we obtain:

(i) = exp [#1 + pj—: (111 mii - #z) + ;i; o (1—p")| . (4.1)
Simplifying, we have:
() = exp (alns + ) (4.2)
or
(n) =B s*. (4.3)
The relation between (&) and {n.) [8]:
(nen) 2 ((R) — 0.5) (4.4)

can be used to obtain the formula for the average charge multiplicity:
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(ne) =B s —1. (4.5)

The validity of this formula is shown in Fig. 5 where the data from Ref. [1, 14, 15]
are presented. The fit gives o = 0.442 and 8 = 2.96. As seen in Fig. 5 there are some
systematic differences between data obtained in various experiments. This is mainly due
to the two reasons: (1) in the majority of the data the strange particle decay products
are either not subtracted from the sample or they are subtracted in an ambiguous way,
(2) the lowest multiplicity channels are not measured experimentally but are taken from

various Monte Carlo programs. Therefore, the values of the fitted parameters should be
taken with caution.

5 Universal character of the statistical properties
observed in the ete™ multiplicity data

We would like to point out that the properties (1) — (3) discussed in the Sect. 2 have
the universal character and are often encountered in nature. This was already observed
in the forties [16]. There exists a vast literature on the subject with numerous examples
illustrating the occurrence of properties (1) - (3) in many different phenomena (for the

bibliography see [17]). We present some evidence for the universal character of these
properties:

Property (1): The way the discrete multiplicity distribution is calculated from
the continuous density distribution ( 2.1) Usually for limit theorems, when the
number of objects tends to infinity, the limiting distribution is continuous. But for 2 finite
number of objects a good approximation is given simply by an integral over the limiting
density ([18], p.92 of Ref. [17]). The best known example is the approximation of the
binomial distribution by the normal distribution (Moivre-Laplace Theorem).

Property (2): The lognormal shape of the density distribution. The lognormal
distribution is very often encountered in nature. Many examples of this can be found
in the literature (see Refs. [16, 17] and references therein). In the following we quote
some examples - from various branches of science ~ of distributions which were found to
be of the lognormal shape [16, 17]: distribution of size of particles coming from grinding
rocks {geology), distribution of incomes and family budgets (economy), distribution of size
of organisms, abundance of species, number of lesions in plants and animals (biology),

distribution of age of marriage (sociology), distribution of the number of words in sample
sentences (philology).

Property (3): Linear dependence of dispersion on the mean. Linear dependence
of dispersion on the mean is also very often encountered in nature. First of all it is a basic
feature of a wide class of branching processes [19, 20, 21]. Let us also list examples such
as: the hourly lemon sole catches [22], the number of pines in forests [22], and again in the
processes mentioned in previous paragraph: incomes [23], family budgets [24], number of
non-resident species of birds [22], lesions in plants [25], the tick counts on sheep [22], and
the age of marriage [26].

Thus each property characterizing the ete™ multiplicity distribution is also found in
many natural phenomena. But the crucial point is that all these properties are very often
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characteristic for the same phenomenon. The correlation is so strong that some authors
treat, e.g., the observation of property (3) as a signature of (2) [25]. There is a standard
way of analysing skew distributions, namely by applying the so-called lognormal transfor-
mation [5, 22, 27]. The frequency distribution is investigated as a function of Inz rather
than = itself. Obviously, linearity of dispersion of = implies constancy of dispersion of Inz
for the lognormal distribution. In a number of cases, when the distribution of Inz was
plotted instead of z, the distribution became normal and dispersions of all distributions
became equal [5, 22, 28], Thus the properties (2) and (3) appear together.

In summary, it seems that many various phenomena in nature have similar statistical
features as the multiplicity distribution in e*e~ collisions. For illustration we present the
distribution of age of marriage [26). We have chosen this set of distributions because of a
clear interpretation of bivariate distribution [26]. It happens that for a given age of the
bridegroom, a distribution of the age of a bride is lognormal with a certain mean and
dispersion. These parameters vary with the age of the bridegroom in such a way that
dispersions are linear functions of the mean which is illustrated in Fig. 6. Obviously, this
means that the data obey the KNO-G scaling. We illustrate this fact also by presenting
a standard graphical KNO-G plot (S, vs /(7)) in Fig. 7 and a probit diagram in Fig. 8.
I'igs. 6, 7 and 8 can be compared with the equivalent plots for the ete™ data (Figs. 2,
3 and 4). Small deviations from linearity in Fig. 8 for large values of age mean that
distributions are limited due to the final human life time.

6 Conclusions

It has been shown that the ete™ multiplicity distributions and many other phenomena
of completely different "dynamics” have the same simple statistical properties. This fact
can be understood in terms of the Central Limit Theorem. When a final distribution
is created by many contributions, its shape is not determined by the properties of the
particular contributions. Especially, if a random variable is varied by a large number of
random impulses in such a way that the change is proportional to the actual value of
the variable, the distribution is lognormal. In the case of a distribution of two variables
varied by proportional impulses, if one of the variables is fixed, the dispersions of the
second variable are linear functions of the mean and the distributions obey a scaling law.

In the case of the ete™ collisions the role of the second variable is played by the
available energy. It seems that the scale invariant branching process provides an expla-
nation of multiparticle production. Such a picture has a deep theoretical foundation in
the scale invariant field theories [11]. This approach can be successfully applied to the
ete” multiplicities [3]. The lognormal distribution with its scaling properties describes
the experimental data very well.

We claim that due to the predictive power of the Central Limit Theorem it is not
necessary to create any complicated model with many details to predict the general shape
of the inclusive distributions. Such details, unless they change basic statistical assump-
tions, cannot change the final result. It is just the statistics, which determines the scaling
properties and the general shape of distributions. However, the Central Limit Theorem
does not give values of the parameters, which have to be fitted. Should the values of
parameters be obtained within a theory, the theory has to be enriched by a dynamics.
It seems that the modern QCD branching models, such as [29], which have intrinsically



the statistical properties proposed in this paper supply in the best way the necessary
dynamics.
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A Derivation of the lognormal distribution

In this appendix we shall remind the derivation of the lognormal distribution after Kapteyn
[5]. Let us consider a process controlled by a random variable z. The variable = can be

changed by random impulses ¢;, whose effects can in general depend on the actual value
of z. Thus we can write:

T; =Ti1+E ¢ (33,'_1) . (A.l)
Now we take the sum of -:-:,-I: . )

ST T S (A.2)

= 9(z)  H

If every individual impulse is small, we can replace the sum on the left hand side by
the integral and denote it by G(z):

i=1 g (m:‘—l)

n.‘.c;-—-:l!;_lwwdﬂ: 2
Y e ~ ] am =) (A3)

If the ¢; are independent of each other, the sum on the right-hand side of (A.2) should
be distributed normally due to the Central Limit Theorem. Hence, the sum on the left-

hand side (G(z)) is also distributed normally and we obtain the following formula for the
distribution of z:

__ 1 A (<G
f(”)”\/z?ag(w) p{ 53 } (A.4)

Functions of the form (A.4) are called "Kapteyn distributions” [5]. The case most
interesting for us is when the effect of an impulse is proportional to the actual value of z:

Ti = Ti1 T & Ty . (A.5)
Thus:
glz)==c. (A.6)

In this case we obtain;

G(z)=Inz (A7)

and the lognormal distribution:

f(z) = 2;033 exp{—a%;}ﬂ}. (A.8)

This result one can obtain in a less rigorous but a more intuitive way. If the effect of
an impulse is proportional to the actual value of z, the formula (A.1) assumes the form:

T;= Byt (A.9)
Thus the final value of z is a product of a large number of individual factors:
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T = H(l +€) . (A.10)

Taking logarithm of the both sides and expanding In(1 + ¢;) near 1 one obtains:
In(z/zo) =Y & - (A.11)
=1

The sum of large number of such contributions ¢; is distributed normally due to the
Central Limit Theorem. Hence In(z) is distributed normally and z lognormally.

In the more general case, when the effect is a linear function of =, we obtain a normal
distribution in the variable In(z + ¢).

Thus we see that the lognormal distribution is obtained when the effect of random
impulse is proportional to the actual value of =.

B Linearity of dispersions

Now let us consider the generalization of the process for two variables z and y. In principle
the random impulses can affect = and y in different ways. Thus, under arguments similar to
those given in the previous section, the final distribution is a bivariate normal distribution

of G1(z) and G,(y) [6]:

1
flz,y) = 2?1_0102 N @ - exp (B.1)

{ 2(1H 2) [(Gl(m) )’ 2P(G1(:ﬂ)—ﬂ1)(Gz(y)—#z)_!_(Gz(y)—ﬂvz)z]}_

aTF10 O’%

Let us again consider the case when z is distributed lognormally, i.e. Gy(z) = In =.
For a fixed value of y = { we have the conditional probability:
fely=0) = (0] [ fz)dz = (B-2)

1 1 a1 2
- e l(n(z) — gy) — p 2 - .
s P Ty g [08() — 1)~ P2 (G0 )] }
This is again a lognormal distribution (A.8) with parameters:
o
bt e (@) ), o =al (1= ). (83)

Thus, if we measure the distribution of z for various values of (, the parameter u
(¢ = (ln z)) will change, while the dispersion of Inz (denoted by o} will be constant.
Now we can calculate moments of z as™a function of parameter ¢:

()0 = exp [k u(0) + 5 7] (8.4)
DL(¢) = (2*)(¢) — (=)*(¢) = [exp(o?) — 1] {=)(() - (B.5)

Thus, since o = const((), the dispersion is a linear function of the mean:

Dy = y/(exp(e?) — 1) - (=} . (B.6)

One can easily find similar formulae for higher moments.
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Figure captions

Fig. 1

Shape of the lognormal scaling function %(z) {(eq. (2.7) for the e*e™ data [1)).

Fig. 2

Graphical test of the KNO-G scaling. S,, = E P, plotted as a function of reduced mul-

tiplicity (z = n/(f)) for the whole collection of “the ete~ data [1].
Fig. 3

Probit diagram for the whole collection of the e*e™ data [1].
Fig. 4

D;, D4 and Dg plotted as a function of mean multiplicity for collection of the ete™ data
[1].

Fig. 5

The average multiplicity {n..) plotted as a function of centre of mass energy /5 for the
multiplicity data measured by the indicated collaboration teams. The solid line presents
the fit to the data with formula (4.5).

Fig. 6

Dispersions of the distributions of ages of bride (D, Dy and Ds) plotted as a function of
mean age of bride for a given age of bridegroom [26].

Fig. 7

Graphwa.l test of the scaling properties of the age of marriage distributions [26].

E P, plotted as a function of reduced age (age/({age)) for the distribution of age of mar-
k=

rlage [26].

Fig. 8

Probit diagram for the age of marriage [26].
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