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Abstract

Multiparticle production is studied as a bivariate branching process: in
multiplicity and in energy. In this approach the Central Limit Theorem pre-
dicts multiplicity distribution to be Jognormal and obeying the KNO-G scal-
ing. The analytical results are compared with Monte Carlo calculations. It 1s
shown that the KNO-G scaling and the lognormal shape of the multiplicity
distributions are well established features of experimental e*e”and pp data as
well as those generated by Monte Carlo programs.
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1 Imtroduction

The experimentally observed multiplicity ‘distributions in ete~and pp inelastic collisions are
characterized by the three basic features: the shape of the distributions is lognormal, the
distributions obey the scaling, and the average multiplicity depends on the energy according
to a power law. The experimental evidence for these features is presented in Sections 2 and
3. Sections 4, 5, and 6 are devoted to a possible explanation of the observed facts. The
gtudy presented here was done in collaboration with R.Szwed and A K. Wréblewski.

2 ete collisions

The lognormal shape of the distributions and the scaling law can be described by the following
fermulae:
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To avoid strong correlation between u and o it is better to fit the shift ¢ and the dispersion
D = y/{z?) — {z)? and calculate N, y and ¢ from normalization conditions [1]
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The global fit to the ete~data for /3 between 7 and 91 GeV (including recently published
data from TRISTAN and LEP) gives [2]

c=0564+0.03, D =0277+0.001 XQINDF = 208/285 = 0.74 (2.4)
(N =1.000 u=0429 o =0.1762).

The goodness of the fit is shown in Fig. 1 which is a probit diagram [1,3,4]. An alternative test

of the scaling is presented in Fig. 2 where dispersions of various orders Iy = \/ (nk) — (nen)*
are plotted as functions of the average multiplicity {n.). It is seen that the dependences of
Dy on (n.,) are linear which proves the scaling. The continuous lines drawn in the figure
are calculated from the lognormal distribution with parameters (2.4).

To make the most direct test of the scaling we have fitted each of data sets separately.
The resulting parameters are presented in Fig. 3. It is seen that the parameters from various
experiments are slightly different, but do not show any systematic dependence on the energy.
Thus all observed multiplicity distributions in e*e”collisions can be described by a single
lognormal distribution with two parameters fixed for all energies.

Fig. 4 presents the dependence of the average multiplicity {n.) on the collision energy
/3. The continuous line represents the power law {n.) = 1.48- s%??! [5] which describes the
data quite well.

3 pp inelastic collisions

Multiplicity distributions in pp collisions have similar properties to those observed in et e”in-
teractions!. Figure 5 — a probit diagram — proves the scaling and the lognormal shape of

1The pp nondiffractive collisions were independently studied in Ref. {6].



the distributions in the range from /s = 3 to 62 GeV. The dispersions of various orders are
plotted in Fig. 6. Figure 7 presents the values of parameters ¢ and D fitted to each of data
sets separately. It is seen that all data in the range from V® = 310 62 GeV can be described
by a common logrormal distribution [7]

e= 4254020, D =0620+0003 x°/NDF = 458/316 = 1.45 (3.1)
(N =1061 pu=1638 o =0.1210).

Only the UAb data at 540 GeV require different parameters [7] (Fig. 8)
c=1124+022, D =06424£0011 x*’/NDF =29/38=0.77 (3.2)

(N =1.028 p=0692 ¢ =0.3003).

However we would like to stress that the observed scaling violation in inelastic data at this
energy is significantly smaller than that in nondiffractive collisions which is usually quoted.
It is well known that the dependence of the average multiplicity on the energy in pp
collisions is similar to that in e* e~ interactions. It was shown [7] that it also obeys the power
law with the same exponent, It is seen in Fig. 9 where the horizontal axis corresponds to
W = /s for ete"and W = (/s —2m,) /3 for pp. It suggests that pp collisions can be
treated as a certain combination of ete collisions. Usually two scenarios are considered.

Scenario 1. Only one parton from each proton is engaged in the reaction, whereas
the remaining partons are only "spectators”. Thus, the colliding partons create a cascade
similar to that in the e*e™ collisions. However, the spectators remove a part of the energy so
that the initial energy of the cascade varies from event to event. Thus the final distribution
is a mixture of the elementary distributions with various initial energies.

Scenario 2. The initial energy is divided between a number of colliding partor pairs.
Each pair develops an elementary cascade. Thus the final distribution is a convolution of
several elementary distributions.

It was shown [7] that any combination of both scenarios saves the scaling and the power
law for the average multiplicity.

4 Bivariate branching

The multiparticle production is recently often studied as a stochastic branching process. This
study started in 1970 when Polyakov [8] showed that the branching picture of multiparticle
production is implicated by the scale-invariant field theory with the similarity principle. Since
that time many approaches were proposed to calculate final multiplicity distributions. The
important feature of our approach is that the process is controlled by two variables having
the same rank, the multiplicity and the parton energy, rather than by the multiplicity only.
It is illustrated in Fig. 10 where the thickness of a branch represents the energy available for
particle production carried by a given parton. '

5 Particle production as a random walk

Let me illustrate the process in the following graph (Fig. 11). Let the vertical axis correspond
to the multiplicity n, and the horizontal axis — to the average energy E available for particle
production carried by a single parton (it is sometimes called “cluster mass”). The process
starts from E = v/s and n = 1 and ends at E of the order of the pion mass and a certain value
of multiplicity. In each step the number of particles increases and the energy of each particle
decreases, thus the process is a kind of random walk in multiplicity and energy. Because of
the multiplicative version of the Central Limit Theorem the probability of walking from a
given point to another one is given by the bivariate lognormal distribution which is shown in
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Fig. 11 as a coniour plot. If we want to obtain the finral multiplicity distribution we should
set the starting point at » = 1 and B = /¢ and take the vertical slice at £ = m,. Thus we
see that the final multiplicity distribution is lognormal. If we start from various values of Ve
then the final distribution is given by various vertical slices. That is the reason of scaling.
It also determines that the average multiplicity depends on the energy as {fi) = Bs*. The
details of the calculation can be found in Rei. [5].

It is interesting to note that such a picture of multiparticle production implies also the
lognormal distribution of the final particle energy. Thus the observation of the OPAL col-
laboration (this conference) that the distribution of the momentum of charged particies is
close to the lognormal one is one more confirmation of the presented picture.

This picture can be easily generalized for pp collisions. The initial interaction (scenario
1 and 2) can be treated as a first step of the branching.” Of course this step has slighly
different properties than others but {due to the Central Limit Theorem) it can only change
the parameters of the final distributions.

6 “Poor Man’s” Monte Carlo

The crucial point of the Ceniral Limit Theorem is that the final results depend on the
general scheme of the process rather than on any details concerning individual steps. To
illustrate this fact in case of bivariate branching let me present you a very simple Monte
Carlo example. I will use words such as “particle”, “energy”, “decay” etc., but I will have in
mind abstract mathematical quantities and formula.e ra.ther than real physn:a.l objects and
processes.

The program starts from a single particle with a certain energy E,. The particle decays.
It means that we generate two random numbers. The first one is a fraction of the energy
kE which will be — let us say — used for the movement of created particles, i.e. simply
subtracted.

Bl = By~ kB . (6.1)

As a distribution of k a flat distribution ranging from 0.2 to 0.8 wag taken. The second
number r is used to divide the rest of the energy between the two created particles.

By=rEy, BEy;=0—-r)E. ' ; (6.2)

A flat distribution ranging from 0O to 1 was taken. Each of the created particles can break
again until its energy is greater than a certain cut value, for example 0.28 (2m, in GeV).

We have generated in this way one million events for several initial energies. Obtained
multiplicity distributions are presented in Fig. 12. The points from various energies form
a single line which proves the excellent scaling. The continuous straight line represents
the lognormal distribution fitted to the ete multiplicity data. It is seen that multiplicity
distributions generated by the simple Monte Carlo have close to the lognormal shape and
coincide quite well with the experimental data.

. Figure 13 shows that also the experimentally observed dependence of the average multi-
plicity on the collision energy is reproduced very well.

It seems incredible that so primitive Monte Carlo is able to reproduce experimental results
with such high precision. It is a good illustration of the predictive power of the Central Limit
Theorem. Thus this example has rather mathematical than physical meaning. i we want
to be closer to reality we can use a “professional” Monte Carlo programs strongly based on
the QCD.

7 “Professional” Monte Carlo

We have used two Monte Carlo programs — JETSET and HERWIG and we have generated
50000 events at energies indicated in Fig. 14 and 15. The resulting multiplicity distributions
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are plotted in these figures for each generator as probit diagrams. The continuous line
represents the lognormal distribution fitied to the experimental et e~data. It is seen that the
multiplicity generated by JETSET has the lognormal shape, obeys the scaling and reproduces
the experimental data very well. In case of HERWIG the generated distributions are still
lognormal and also obey the scaling, but some systematic deviation from the experimental
results is seen. However I would like to stress that we did not tune the parameters of the
models.

Figure 16 presents dispersions of various orders as functions of the average charge mul-
tiplicity. Again it is seen that JETSET reproduces experimental data very well. The points
coming from HERWIG lie slightly above the experimental data, but follow the straight line
which again proves the scaling. :

The average charge multiplicity as a function of the collision energy /s is plotted in the
last figure. Average multiplicity coming from either generator obey the relation (n.,) =
Bs* — 1 (continuous line), but the values of parameters are slightly different from the fit to
the experimental data (dashed line).

8 Conclusions

In conclusion I would like to say that in my opinion the present understanding of processes
defining observed multiplicity distributions is quite good because the experimental data can
be reproduced by Monte Carlo programs as well as by analytical calculations.
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