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Abstract

RPC geometry and Muon Trigger acceptance study is presented. In
uence of detector dead

areas on the trigger performance is discussed. Various possible trigger algorithms are compared.

Recommendations for designing RPC geometry and choosing among trigger algorithms are given.

1 RPC geometrical coverage in the barrel

The CMS Muon System [1] consists of 4 muon stations (both in the barrel and in the endcaps) arranged
in such a way that every high pt muon should cross active areas of at least 3 of them. Therefore, the
RPC trigger [2] is based on a coincidence of 3 out of 4 stations. Thus, the geometrical acceptance of the
trigger can be de�ned as a probability to cross at least 3 out of 4 RPC planes (denoted as MS1,2,3,4)
placed in di�erent muon stations. A muon with pt < 5-6 GeV cannot, however, reach outermost stations
due to energy losses. In order to be able to trigger on such muons the two inner stations in the barrel
are equipped with additional RPC planes, denoted as MS1' and MS2'. In this case trigger requires a
coincidence of at least 3 out of 4 planes: MS1,1',2,2'.

1.1 Simulation

The trigger acceptance was studied using IRIS ExplorerTM [3] interfaced with GEANT based simulation
program CMSIM [4]. CMS layout corresponding to the Technical Proposal design [1] was simulated
(Fig. 1). Average geometry of ECAL (IEVERS=-120) and HCAL (IHVERS=-41) were used. RPC dead
space along each edge was assumed to be 1.5 cm, which is rather optimistic. Later engineering study
indicates that it might be as big as 3 cm.
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Figure 1: GEANT implementation of the muon stations layout as described in the CMS Technical
Proposal.
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Figure 2: Geometrical acceptance of the RPC trigger de�ned as a probability of crossing 3 out of 4 RPC
planes. At high pt one RPC plane per station is used (solid line). At low pt two planes of MS1 and two
planes of MS2 are used (dashed line).
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1.2 Acceptance losses in �

1.2.1 Acceptance for high pt muons

In order to understand the origin of possible acceptance losses we studied the � and � coordinates
separately. Fig. 2 shows the acceptance for j�j < 0:15, i.e. within the central wheel, where there are
no gaps in �. The acceptance is integrated over all �. It is seen that the high pt algorithm based on
MS1,2,3,4 is fully e�cient above pt = 6 GeV. Due to the staggering of the muon station a high pt muon
will always cross at least 3 of them.

1.2.2 Low pt reach

Below 6 GeV the energy losses decrease the acceptance. Therefore, in this region the low pt algorithm
based on MS1,1',2,2' should be used. It is no more than 90% e�cient because dead spaces in MS1 and
1' as well as MS2 and 2' are correlated, and, in most cases, muon crosses either 4 or 2 RPC planes. The
lowest possible e�ective pt cut is around 3.6 GeV. One should however keep in mind that this number is
very sensitive to the amount of absorber along the muon path. The simulated geometry does not contain
cables and some mechanical structures. The value of 3.6 GeV should be considered then as a lower limit
rather than the most probable value. After more detailed simulation it may grow to about 4 GeV.

1.2.3 Charge asymmetry

The staggering of the muon stations slightly violates the �� symmetry of the muon system. Hence,
one can expect some asymmetry in the trigger acceptance for positive and negative muons. Such an
asymmetry should be carefully watched because it may a�ect measurements of some physics quantities.
Fig. 3 shows that indeed some asymmetry of the order of 4% is present around pt = 7-8 GeV. At this
moment it is di�cult to judge about its possible impact on physics, because an asymmetry itself is not
dangerous if it is precisely known. Therefore, one should ask not only how big the asymmetry is but also
with which accuracy we know it. Anyway, the best way to reduced the asymmetry is to minimize dead
areas at the corners of the stations. Some possibilities of such reduction will be discussed later.
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Figure 3: Charge asymmetry for low pt (left plot) and high pt (right plot) muons.

1.2.4 Staggering optimization

The role of staggering can be better understood by comparing the two limiting cases: maximal and
minimal staggering. The maximal staggering option is the one shown in Fig. 1, which is the baseline
design described in the Technical Proposal [1]. It has been simulated by the modi�ed geometry of the
CMSIM 007 program [4]. The minimal staggering was implemented in the o�cial release of CMSIM 007
(Fig. 4). This option has smaller dead areas in each station. Therefore, the low pt algorithm which relies
on two RPC planes per station is more e�cient. This can be seen in Fig. 5 (left plot). On the other hand
the high pt algorithm is not fully e�cient above pt = 6 GeV because the staggering is not enough to
avoid overlapping of dead spaces in di�erent stations (Fig. 5, right plot). Thus the minimal staggering is
better at low pt, whereas the maximal one performs better at high pt. The overall conclusion is in favour
of maximal staggering because the low pt algorithm is used only upto 5-6 GeV, whereas the high pt one
covers the whole remaining region which is moreover more important from physics point of view.
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Figure 4: Layout of the muon stations implemented in CMSIM version 007. Stations are less staggered
then in the CMS Technical Proposal.
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Figure 5: Comparison of maximal staggering (Technical Proposal { solid line) and minimal staggering
(CMSIM 007 { dashed line) for low pt (left plot) and high pt (right plot) muons.
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1.3 Acceptance losses in �

Possible acceptance losses in � should not depend strongly on muon pt because the bending in the RZ
plane is very small. Therefore they were studied with monoenergetic muons (1 TeV). Results are shown
in Fig. 6. One can see dramatic e�ect of the gaps between the barrel wheels, especially for the low pt
algorithm. It is explained in Fig. 7. Muons emitted in the shadowed angles cross only two planes and
have no chance to give a trigger. Therefore one should expect two completely dead areas in Fig. 6 around
� = 0:28 and � = 0:35. In fact they are smeared out by the binning e�ect of the histogram.
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Figure 6: Rapidity dependence of the trigger acceptance in the region without � gaps (solid line) and
averaged over all � angles (dashed line) for low pt (left plot) and high pt (right plot) algorithms. Arrows
indicates end of the barrel where the study was performed.

There was a suggestion that extending the length of the central wheel may improve the acceptance
because muons would cross the dead zones at more favourable angle. This is illustrated in Fig. 8 where
the wheel length runs from 256 cm (current design { 5 equal wheels) to 426 cm (the case of 3 equal
wheels). Indeed the acceptance increase with the length of the central wheel, but rather slowly. At an
expense of enormous technical complications (longer wires, chamber bending under gravitation, larger
tools for chamber production, etc.) one can reduce the dead zone by � 40%. On the other hand any
reduction of the gap between the wheels has an immediate positive impact on the acceptance.
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Figure 8: Size of the trigger acceptance gap �� (< 3
RPC planes crossed by a muon) for various position
and width of the gap between the barrel wheels.

The acceptance loss due to the gap between the wheels in the current design is estimated to be � 3%
for the single muon and � 6% for the double muon trigger. If we will not succeed to narrow the gap
between the wheels this will remain an irreducible loss for muons with pt < 6 GeV.

At high pt (> 6 GeV) the gap do not pose a problem because, as can be seen from Fig. 6, muons
always cross at least 3 out of 4 planes MS1,2,3,4.
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2 Various "three out of four" algorithms

2.1 Classi�cation of algorithms

Let us consider a muon crossing 4 triggering planes at �1, �2, �3 and �4 respectively. If it crosses active
areas of the planes it create a pattern of 4 hits1 which we denote (�1�2�3�4). If one of the points (say,
in the second plane) is in a dead area, only 3 hits will be created which can be denoted (�1 � �3�4). We
will not consider the cases where less than 3 hits were created.

Trigger algorithms can be divided into two classes:

� 4/4 algorithms (read: "four out of four algorithm") | only 4-fold coincidence cause a trigger

� 3/4 algorithms | 3-fold coincidence is enough to cause a trigger; obviously 4-fold coincidence
cause it as well

The 3/4 algorithms can be in turn divided into:

� weak 3/4 algorithms| do not distinguish 4-fold and 3-fold coincidences

� strong 3/4 algorithms | which may, in principle, assign di�erent pt to 4-fold and to 3-fold
coincidences and set a so called "quality bit" in the case of 4-fold coincidence

Another possible division of 3/4 algorithms is into:

� random 3/4 algorithms | which do not distinguish which plane was missing and assign the
same momentum for all of them

� non-random 3/4 algorithms | which may, in principle, assign di�erent pt to each of the 3/4
patterns: (��2�3�4), (�1 � �3�4), (�1�2 � �4), (�1�2�3�).

The "random 3/4 algorithms" can be realised in practice either by "scanning" the coincidence inputs with
the logical "1" or replacing the coincidence by a counter with threshold = 3 (see Fig. 9). The "scanning"
can be performed right at the inputs from RPCs, simultaneously on entire planes.

Special, narrow subclass of "non-random 3/4 algorithms" which can be of our interest are:

� forced 3/4 algorithms| only one of the possible four 3/4 patterns: (��2�3�4), (�1 � �3�4),
(�1�2 � �4), (�1�2�3�), causes a trigger.

Above de�nitions are summarised in Tab. 1 and illustrated in a pictorial way in Fig. 9.

algorithm �1�2�3�4 ��2�3�4 �1 � �3�4 �1�2 � �4 �1�2�3�
4/4 p { { { {
strong random 3/4 p4 p3 p3 p3 p3
strong non-random 3/4 p4 p31 p32 p33 p34
weak random 3/4 p p p p p
weak non-random 3/4 max(p31; p32; p33; p34) p31 p32 p33 p34
forced 3/4, e.g. p p { { {

Table 1: Various "3 out of 4" algorithms. Di�erent patterns, which may, in principle, be assigned di�erent
pt, are indicated by di�erent indices of p.

1Here we assume that a muon create only one hit per plane. The problem of clusters consisting of several hits in one
plane is extensively discussed in [6].
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Figure 9: Various "3 out of 4" algorithms.

2.2 Comparison of di�erent algorithms

2.2.1 Forced 3/4 algorithms

Such an algorithm could be useful to correct for dead areas in �. A dead area can be considered as a
number of "missing strips" which can be substituted by logical "1" on the processor input (see Fig. 9).
This solution, however, cannot be applied to correct for the gaps in Z, between the wheels, because they
do not correspond to any set of "missing strips". Therefore, it seems to be necessary to implement some
"non-forced" algorithm.

2.2.2 Random and non-random 3/4 algorithms

In principle "non-random" algorithms should give better performance (steeper e�ciency curves) than
the "random" ones because a "random" algorithm triggers with any 3/4 pattern contained in a 4/4
one, whereas a "non-random" algorithm gives a possibility to choose a particular set of 3/4 patterns,
thus being more selective. In practice however the method of selecting valid patterns described in [5, 7]
leads to the same sets of patterns in both cases except of low populated tails. Hence, having no strong
argument from the performance point of view we choose the "random" algorithms because they are easier
to implement.

Additional feature of "random" algorithms is that they do not distinguish between 3/4 caused by a
dead space (like e.g. the Z gap) and the RPC intrinsic ine�ciency. Thus they automatically correct for
this kind of ine�ciencies.
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2.2.3 Week and strong 3/4 algorithms

The �nal choice is to be made between the "weak" and the "strong" class. In order to enable a rational
choice both algorithms were simulated by the MTRIG program [8] within the GEANT/CMISM framework.
The trigger works separately on 39 segments in � (numbered from -19 to 19). In each segment 4 RPC
planes are used as shown in Fig. 10.

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200
Z (cm)

R
 (

cm
)

0.09 0.30 0.48 0.64 0.79 0.93 1.06 1.16

1.24

1.32

1.40

1.50

1.60

1.75

1.87

1.99
2.10
2.20
2.30
2.40

1

1

2

3

4

2

1

2

3

4

3

1

2

3

4

4

1

2

3

4

5

1

2

3

4

6

1

2

3

4

7

1

2

3

4

8

1

2

3

4
9

1

2

3

4
10

1

2

3

4
11

1

2

3

4 12

1

2

3

4 13

1

2

3
4 14

1

2

3
4 15

1

2
3

4 16

1

2
3

4 17

1

2
3

4 18

1

2
3

4 19

1

2
3

4

Figure 10: GEANT implementation of the RPC geometry. For each segment its number, � range and 4
planes used for the trigger are marked.

It turns out that the most critical is the transition region between the barrel and the endcap. Ge-
ometrical acceptance to record all four or any 3 out of 4 hits is shown in Fig. 11 for �ve segments of
this di�cult corner. We can two of them, 0.63-0.79 and 1.16-1.24, consider as "good", because the 4/4
acceptance is about 80% and 90% respectively, and the 3/4 one reaches 100%. The other 3 segments are,
however, "bad", because the 4/4 acceptance does not exceed 60% and the 3/4 one is only about 90%.
The reson for this in the case of 0.79-0.93 segment is a lack of �-overlap of RPCs in MF1A. In the case
of 0.93-1.05 and 1.05-1.16 segments, the loss of e�ciency is due to short outer radius of MF2 and MF3
respectively. Originally, this radius was matching the barrel outer radius and equal to 728 cm. Later it
was reduced down to 692 cm in order to shorten CSC strips and reduce the overall cost (compare Fig. 1.3
and 7.2 of [1]). In this case, a signi�cant part (� 40%) of the fourth triggering plane in this two segments
is missing (see Fig. 10), which leads to the observed acceptance losses.
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Figure 11: RPC acceptance in several � segments.

Let us now compare the performance of various 3/4 algorithms in one "good" (Fig. 12) and one "bad"
(Fig. 13) region. The e�ciency curves are plotted in the logarithmic scale to see selectivity of cuts (given
by the steepness of the curves), as well as in the expanded linear scale to observe acceptance losses. Let's
begin with a "good" region and the 4/4 algorithm. The e�ciency curves are rather steep there, but the
e�ciency is limited to about 80% due to the geometrical acceptance. In contrast, the weak 3/4 algorithm
in this region is 100% e�cient, but it has very poor momentum selectivity. This is due to the fact that
the 4 point measurement of the track curvature is better than the measurements based on only 3 points.
When we combine the two algorithms into the strong 3/4 algorithm we combine the good features of
both. The resulting e�ciency curves are very steep and they reach 100%.

In a "bad" region (Fig. 13), combining the 4/4 algorithm with the weak 3/4 one, we obtain the strong
3/4 algorithm inheriting the bad features of the two. The resulting curves are not very steep and hardly
exceed 90%, i.e. the algorithm is neither selective nor e�cient. The strong 3/4 algorithm is not worse,
however, than the weak 3/4 one.

We can conclude that the strong 3/4 algorithm (random or non-random) is much better than the
weak one. Since the random algorithm is easier we are �nally going to use the random strong 3/4 one.
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3 Requirements for the RPC geometry

From the above study one can also derive the requirements for the RPC geometry. We ought to ensure
the 4/4 acceptance of, at least, 80% and 100% in the 3/4 case. This is much stronger requirement than
the corresponding one for Cathode Strip Chambers (CSC) or Drift Tubes (DT). This is because the CSC
and DT deliver a vector per station, hence coincidence of two stations provides quite precise momentum
measurement, and signi�cant background suppression. The RPC chamber delivers only a point, thus
coincidence of at least 3 stations is necessary both for momentum estimate and for background reduction.

In order to ful�ll the above requirement one needs to design carefully the RPC geometrical layout.
As far as possible the following guidelines should be followed:

BARREL

� minimal dead space along the chamber edges

� overlap of gas gaps in Z within each wheel

� overlap of chambers in � at MB4

� maximal use of space in � within the iron at MB1, 2 and 3

� minimal space for the magnet power and cooling chimneys

ENDCAPS

� overlap of chambers in �, also at MF1A and MF1B (it is not the case now [1])

� overlap of gas gaps along R

� outer radius of MF = 728 cm rather than 692 cm (current design), especially at MF2 and MF3.

If possible, the RPC's should be placed at the inner side of the muon stations because eventual showers
are less developed there. Moreover, it usually gives better geometrical coverage.

4 Sorting with quality bits

The "strong" algorithm di�ers from the "weak" one by the fact that it is able to distinguish 3/4 and 4/4
coincidences. Information whether a 3/4 or a 4/4 coincidence occurred should be delivered by a PACT
processor as a "quality bit". These bits might be very useful for the global muon trigger combining the
RPC and DT/CSC information. They can also e�ect the sorting algorithm.

� Within the same segment 4/4 should always be chosen in preference to 3/4 irrespectively of the pt
assignment.

� There should be at least one empty segment in � or � between two accepted muons. Separated
muons should be sorted according to pt regardless their quality bits. Therefore the check of the
separation can be done either at every sorting step or only at the very end of the sorting tree
(e.g. in the global muon trigger). The �rst solution is more expensive, the second one might be
dangerous: multiple copies of a high pt muon may suppress other, real muons. It should be checked
by the simulation whether the fact that the system delivers four muon candidates reduces enough
this danger.

� If there are two candidates in the adjacent segments the 4/4 one should be retained and the 3/4
one should be dropped. Consequences of this choice should be checked by simulation.
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5 Conclusions

Presented study leads us to the following choices and recommendations:

� RPC trigger will be based on 4 RPC planes. In order to deal with all kind of ine�ciencies we have
chosen

strong random 3 out of 4 algorithm

which takes 4-fold coincidence if there were hits in 4 planes and 3-fold coincidence of any 3 planes
in the opposite case.

� This algorithm can work properly only if

3 out of 4 chambers acceptance = 100%
4 out of 4 chambers acceptance > 80%
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