Fizyka CMS Czego My Szukamy?

G.Wrochna

- Krótka historia fizyki cząstek
- Sytuacja obecna
- Narzędzia badawcze
- Fizyka CMS
 - higgs Modelu Standardowego
 - łamanie CP i fizyka kwarku b
 - supersymetria: higgs i supercząstki

Unifikacja oddziaływań

- QED elektrodynamika kwantowa
- QCD chromodynamika kwantowa

Krótka historia fizyki

γ e⁺ γ γ e⁺ γ	10 ⁻¹⁰ m	<10eV	3 [.] 10 ⁷ lat	1900 mechanika kwantowa, fizyka atomowa 1940-50 elektrodynamika kwantowa
	10 ⁻¹⁵ m	MeV-GeV	3 min.	<mark>1950-65</mark> jądra, hadrony, teorie pola
••• @	10 ⁻¹⁶ m	>>GeV	10 ⁻⁶ s	<mark>1965-75</mark> kwarki, teorie pola z cechowaniem
	10 ⁻¹⁸ m	100 GeV	10 ⁻¹⁰ s	1970-83 SPS QCD, unifikacja elektrosłaba
3 leptony $\begin{bmatrix} v_e \\ e \end{bmatrix} \begin{bmatrix} v_\mu \\ \mu \end{bmatrix} \begin{bmatrix} v_\tau \\ \tau \end{bmatrix}$				1990 LEP 3 rodziny fermionów
3 kwarki d s x3 kolory R	t b C B			1995 Tevatron kwark top
pochodzenie mas	10 ⁻¹⁹ m	10 ³ GeV	10 ⁻¹² s	2005 LHC higgs? SUSY?
rozpad protonu?	10 ⁻³² m	10 ¹⁶ GeV	10 ⁻³² s	?? eksp. podziemne?Wielka Unifikacja?
początek Wszechświata	10 ⁻³⁵ m	10 ¹⁹ GeV	10 ⁻⁴³ s	?? ?? grawitacja kwantowa? superstruny?

Sytuacja obecna

Model Standardowy (SM) dobrze opisuje oddziaływania elektrosłabe i silne. Dotychczas nie zaobserwowano żadnych znaczących odchyleń od jego przewidywań.

Ma jednak wady:

- ~20 wolnych parametrów
- masy cząstek generowane są przez mechanizm Higgsa nie wyjaśniony wewnątrz SM
- cząstka Higgsa nie została (jeszcze?) odkryta
- SM nie wyjaśnia też
 - istnienia trzech pokoleń fermionów
 - mieszania pomiędzy pokoleniami

Strategia na najbliższą przyszłość:

- znaleźć cząstke Higgsa lub wykluczyć jej istnienie w obszarze dopuszczalnym przez teorię (~1 TeV)
- poszukiwać odchyleń od Modelu Standardowego
- poszukiwać nowych cząstek (~50 GeV ~5 TeV)

Potrzebne narzędzia

- akcelerator
 - duża energia
 - szeroki zakres energii
 - duża świetlność
- detektory
 - uniwersalność (e, γ , μ , dżety, brakująca energia)
 - granularność (duża liczba cząstek)
 - szybkość (duża świetlność)

Zderzenia proton-proton w LHC

Przy nominalnej świetlności w każdym przecięciu paczek zajdzie 10-20 zderzeń proton-proton.

Eksperyment CMS

Compact Muon Solenoid - to detektor przeznaczony do badania zderzeń proton-proton w akceleratorze LHC.

Podstawowe założenia projektowe:

- 1. Bardzo dobry <u>system mionowy</u> – precyzja pomiaru, hermetyczność, redundancja
- 2. Najlepszy możliwy kalorymetr elektromagnetyczny – zdolność rozdzielcza, jednorodność, granularność
- 3. Wysokiej jakości <u>detektor centralny</u> – gęstość próbkowania, precyzja pomiaru
- 4. Hermetyczny kalorymetr hadronowy

Budowa detektora CMS

Poszukiwanie higgsa

Model Standardowy opiera się na założeniu, że istnieje cząstka Higgsa, lżejsza niż ~1 TeV.

Eksperymentalnie wykluczono już M_H<77 GeV.

Jeżeli higgs nie zostanie odkryty przy największej energii LEP (192 GeV), to do przeszukania pozostanie obszar $95 < M_H < 1000$ GeV.

Optymalna strategia poszukiwania higgsa w LHC zależy od jego masy:

 $\begin{array}{ll} 80 < M_{H} < \ 140 \ GeV & H \rightarrow \gamma\gamma \\ 130 < M_{H} < \ 700 \ GeV & H \rightarrow ZZ^{(\star)} \rightarrow 4 \ \text{leptony} \\ 500 < M_{H} < 1000 \ GeV & H \rightarrow ZZ^{(\star)} \rightarrow 2 \ \text{leptony} + 2 \ \text{dzety} \end{array}$

$H \rightarrow \gamma \gamma$ (80 < M_H <140 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptony (130<M_H<500 GeV)

Przypadku z czterema wysokoenergetycznymi leptonami ($e \$ lub μ) nie da się nie zauważyć.

Zwłaszcza pewna identyfikacja mionów ("złoty kanał") pozwala niemal całkowicie wyeliminować tło. *Precyzja:*

σ (M_H~170 GeV) = 1 GeV.

 $H \rightarrow ZZ^{(*)} \rightarrow leptony+dżety$ (130<M_H<500 GeV)

W reakcjach:

 $H \to Z Z^{(\star)} \to \ell^+ \ell^- \ j \ j$

$$H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \nu \nu$$

$$H \to W^+ W^- \to \ell^\pm \nu \ j j$$

kalorymetr hadronowy mierzy energię dżetów (j) i brakującą energię poprzeczną E_t^{miss} , charakterystyczną dla neutrin (v).

 $M_{Higgs} = 800 \text{ GeV}$

Łamanie symetrii CP

Symetria CP oznacza, że cząstka oddziałuje (rozpada się) identycznie jak jej antycząstka (C) odbita w lustrze (P).

Fakt, że w obserwowanym Wszechświecie jest zdecydowanie więcej materii niż antymaterii sugerowałby istnienie *<u>łamania CP</u>*.

Dotychczas jedynym zjawiskiem, w którym zaobserwowano łamanie CP są *słabe oddziaływania* mezonów K⁰ zawierających kwark s.

Jeśli to *oddziaływania słabe* są odpowiedzialne za łamanie CP, to powinno się ono przejawić dużo silniej w przypadku kwarku b, znacznie cięższego niż s.

Fizyka kwarku b

Łamanie CP najsilniej powinno przejawić się w różnicy częstości rozpadów

$$B^0 \to J\!/\psi \ K^0_S \quad i \quad \overline{B^0} \to J\!/\psi \ K^0_S$$

gdzie

$$J/\psi \rightarrow \mu^+\mu^-$$
, $K_S^0 \rightarrow \pi^+\pi^-$

Można je rozróżnić rekonstruując topologię przypadku.

Supersymetria

Teorie supersymetryczne zakładają, że każda znana (dzisiaj) cząstka ma (jeszcze) nieodkrytego partnera:

fermion (spin połówkowy) ⇔ **bozon** (spin całkowity)

Atrakcyjność supersymetrii:

- elegancja symetrii
- wyjaśnienie małej masy higgsa
- krok w stronę Wielkiej Unifikacji
- możliwość wyjaśnienia ciemnej materii we Wszechświecie (neutralino)

Najprostszy z modeli,

"Minimal Sypersymmetric Standard Model" (MSSM), przewiduje istnienie pięciu bozonów Higgsa:

 h^{0} , H^{0} , A^{0} , H^{+} , H^{-}

Supersymetryczne higgsy

Poszukiwać ich można metodami podobnymi jak w przypadku H_{MS}.

Pojawiają się jednak nowe możliwości, np. rozpad higgsa na 2 leptony.

Możliwości odkrycia supersym. higgsa

Supercząstki

Istnienie supercząstek powinno przejawić się bogactwem spektakularnych procesów z brakującą energią, obfitujących w wysokoenergetyczne dżety i leptony o nietypowych spektrach.

Przykład:

"urwany" rozkład $M_{\ell\ell}$ w rozpadzie

 $\chi_2^0 \rightarrow \chi_1^0 \ \ell^+ \ell^-$

SUSY event with 3 leptons + 2 Jets signature

Inclusive $\ell^+\ell^-$ + E_t^{miss} final states

W LHC można będzie poszukiwać skwarków i gluin do M~2.2 TeV, sleptonów do M~350 GeV.

Można też będzie przebadać zakres masy neutralina, w którym może ono stanowić zimną, ciemną materię Wszechświata:

 $0.15 < \Omega h^2 < 0.4$

Supersymetria, jeżeli istnieje, będzie niemal na pewno odkryta w LHC.